BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23974700)

  • 1. Spectroscopic, viscositic and molecular modeling studies on the interaction of 3'-azido-daunorubicin thiosemicarbazone with DNA.
    Cui F; Liu Q; Luo H; Zhang G
    J Fluoresc; 2014 Jan; 24(1):189-95. PubMed ID: 23974700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of 3'-azido-3'-deamino daunorubicin with DNA: multispectroscopic and molecular modeling.
    Cui F; Hui G; Jiang X; Zhang G
    Int J Biol Macromol; 2012 May; 50(4):1121-6. PubMed ID: 22361456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of an anthracycline disaccharide with ctDNA: Investigation by spectroscopic technique and modeling studies.
    Lu Y; Lv J; Zhang G; Wang G; Liu Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1511-5. PubMed ID: 20197239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate spectrochemical analysis of interactions of three common Isatin derivatives to calf thymus DNA in vitro.
    Shahbazy M; Pakravan P; Kompany-Zareh M
    J Biomol Struct Dyn; 2017 Sep; 35(12):2539-2556. PubMed ID: 27593978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic study one thiosemicarbazone derivative with ctDNA using ethidium bromide as a fluorescence probe.
    Geng S; Wu Q; Shi L; Cui F
    Int J Biol Macromol; 2013 Sep; 60():288-94. PubMed ID: 23769721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of one anthraquinone derivative with ctDNA analyzed by spectroscopic and modeling methods.
    Cui Y; Fu Z; Geng S; Zhang G; Cui F
    J Fluoresc; 2014 Sep; 24(5):1389-96. PubMed ID: 24957254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on the interaction between DNR-D3 (daunorubicin derivative)and ctDNA by spectroscopic methods].
    Lü J; Wang GK; Zhang GS; Liu QF; Lu Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1324-8. PubMed ID: 20672627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the interaction of an anthracycline disaccharide with DNA by spectroscopic techniques and molecular modeling.
    Lu Y; Wang GK; Lv J; Zhang GS; Liu QF
    J Fluoresc; 2011 Jan; 21(1):409-14. PubMed ID: 20953826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and computational approaches to unravel the mode of binding between a isoflavone, biochanin-A and calf thymus DNA.
    Pawar S; Tandel R; Kunabevu R; Jaldappagari S
    J Biomol Struct Dyn; 2019 Mar; 37(4):846-856. PubMed ID: 29458302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods.
    Zhang S; Sun X; Kong R; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1666-70. PubMed ID: 25459730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the interaction between ginsenoside Rh2 and calf thymus DNA by spectroscopic techniques.
    Wu D; Chen Z
    Luminescence; 2015 Dec; 30(8):1212-8. PubMed ID: 25727213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding properties of herbicide chlorpropham to DNA: spectroscopic, chemometrics and modeling investigations.
    Li Y; Zhang G; Tao M
    J Photochem Photobiol B; 2014 Sep; 138():109-17. PubMed ID: 24927231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of acetamiprid partial-intercalative binding to DNA by use of spectroscopic, chemometrics, and molecular docking techniques.
    Zhang Y; Zhang G; Zhou X; Li Y
    Anal Bioanal Chem; 2013 Nov; 405(27):8871-83. PubMed ID: 23975088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Anthracycline 3'-azido-epirubicin with Calf Thymus DNA via Spectral and Molecular Modeling Techniques.
    Cui F; Niu X; Li L; Zhang P; Zhang G
    J Fluoresc; 2015 Jul; 25(4):1109-15. PubMed ID: 26109510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the intercalative binding modes of benzoyl peroxide with calf thymus DNA.
    Xia K; Zhang G; Gong D
    Luminescence; 2017 Sep; 32(6):988-998. PubMed ID: 28116811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic analysis on the resveratrol-DNA binding interactions at physiological pH.
    Zhang S; Sun X; Jing Z; Qu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):213-6. PubMed ID: 21856217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies.
    Wani TA; Alsaif N; Bakheit AH; Zargar S; Al-Mehizia AA; Khan AA
    Bioorg Chem; 2020 Jul; 100():103957. PubMed ID: 32470763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of DNA interactions with bifenthrin by spectroscopic techniques and molecular modeling.
    Zhu P; Zhang G; Ma Y; Zhang Y; Miao H; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():7-14. PubMed ID: 23651773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations on the interactions of diclofenac sodium with HSA and ctDNA using molecular modeling and multispectroscopic methods.
    Cui Y; Hao E; Hui G; Guo W; Cui F
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jun; 110():92-9. PubMed ID: 23557778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on the interactions between genistein and its glucosides with DNA].
    Li H; Yu YY; Hu X; Cao SW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1905-9. PubMed ID: 18975830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.