These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 23974911)
1. Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Han B; Yang Z; Xie Y; Nie L; Cui J; Shen W Mol Plant; 2014 Feb; 7(2):388-403. PubMed ID: 23974911 [TBL] [Abstract][Full Text] [Related]
2. AtHO1 is involved in iron homeostasis in an NO-dependent manner. Li H; Song JB; Zhao WT; Yang ZM Plant Cell Physiol; 2013 Jul; 54(7):1105-17. PubMed ID: 23620481 [TBL] [Abstract][Full Text] [Related]
3. Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Xie YJ; Xu S; Han B; Wu MZ; Yuan XX; Han Y; Gu Q; Xu DK; Yang Q; Shen WB Plant J; 2011 Apr; 66(2):280-92. PubMed ID: 21205037 [TBL] [Abstract][Full Text] [Related]
4. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance. Xie Y; Mao Y; Lai D; Zhang W; Zheng T; Shen W J Exp Bot; 2013 Jul; 64(10):3045-60. PubMed ID: 23744476 [TBL] [Abstract][Full Text] [Related]
5. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Besson-Bard A; Gravot A; Richaud P; Auroy P; Duc C; Gaymard F; Taconnat L; Renou JP; Pugin A; Wendehenne D Plant Physiol; 2009 Mar; 149(3):1302-15. PubMed ID: 19168643 [TBL] [Abstract][Full Text] [Related]
6. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. Xie Y; Xu D; Cui W; Shen W J Exp Bot; 2012 Jun; 63(10):3869-83. PubMed ID: 22419743 [TBL] [Abstract][Full Text] [Related]
7. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Wu H; Chen C; Du J; Liu H; Cui Y; Zhang Y; He Y; Wang Y; Chu C; Feng Z; Li J; Ling HQ Plant Physiol; 2012 Feb; 158(2):790-800. PubMed ID: 22184655 [TBL] [Abstract][Full Text] [Related]
8. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. Shanmugam V; Wang YW; Tsednee M; Karunakaran K; Yeh KC Plant J; 2015 Nov; 84(3):464-77. PubMed ID: 26333047 [TBL] [Abstract][Full Text] [Related]
9. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mendoza-Cózatl DG; Xie Q; Akmakjian GZ; Jobe TO; Patel A; Stacey MG; Song L; Demoin DW; Jurisson SS; Stacey G; Schroeder JI Mol Plant; 2014 Sep; 7(9):1455-1469. PubMed ID: 24880337 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of DNA demethylation enhances plant tolerance to cadmium toxicity by improving iron nutrition. Fan SK; Ye JY; Zhang LL; Chen HS; Zhang HH; Zhu YX; Liu XX; Jin CW Plant Cell Environ; 2020 Jan; 43(1):275-291. PubMed ID: 31703150 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117 [TBL] [Abstract][Full Text] [Related]
12. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide. Zhou C; Liu Z; Zhu L; Ma Z; Wang J; Zhu J Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27792144 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Chen WW; Yang JL; Qin C; Jin CW; Mo JH; Ye T; Zheng SJ Plant Physiol; 2010 Oct; 154(2):810-9. PubMed ID: 20699398 [TBL] [Abstract][Full Text] [Related]
14. Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Emborg TJ; Walker JM; Noh B; Vierstra RD Plant Physiol; 2006 Mar; 140(3):856-68. PubMed ID: 16428602 [TBL] [Abstract][Full Text] [Related]
15. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene. Zhang W; Du B; Liu D; Qi X Biochem Biophys Res Commun; 2014 Dec; 455(3-4):312-7. PubMed ID: 25446093 [TBL] [Abstract][Full Text] [Related]
16. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level. Aksoy E; Jeong IS; Koiwa H Plant Physiol; 2013 Jan; 161(1):330-45. PubMed ID: 23144187 [TBL] [Abstract][Full Text] [Related]
17. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response. Meng X; Li W; Shen R; Lan P J Hazard Mater; 2022 Jan; 422():126913. PubMed ID: 34419841 [TBL] [Abstract][Full Text] [Related]
18. Gibberellin-induced expression of Fe uptake-related genes in Arabidopsis. Matsuoka K; Furukawa J; Bidadi H; Asahina M; Yamaguchi S; Satoh S Plant Cell Physiol; 2014 Jan; 55(1):87-98. PubMed ID: 24192296 [TBL] [Abstract][Full Text] [Related]
19. Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Muramoto T; Tsurui N; Terry MJ; Yokota A; Kohchi T Plant Physiol; 2002 Dec; 130(4):1958-66. PubMed ID: 12481078 [TBL] [Abstract][Full Text] [Related]
20. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity. Durrett TP; Connolly EL; Rogers EE Plant J; 2006 Aug; 47(3):467-79. PubMed ID: 16813577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]