BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23975098)

  • 1. The structural mechanism of KCNH-channel regulation by the eag domain.
    Haitin Y; Carlson AE; Zagotta WN
    Nature; 2013 Sep; 501(7467):444-8. PubMed ID: 23975098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the carboxy-terminal region of a KCNH channel.
    Brelidze TI; Carlson AE; Sankaran B; Zagotta WN
    Nature; 2012 Jan; 481(7382):530-3. PubMed ID: 22230959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct interaction of eag domains and cyclic nucleotide-binding homology domains regulate deactivation gating in hERG channels.
    Gianulis EC; Liu Q; Trudeau MC
    J Gen Physiol; 2013 Oct; 142(4):351-66. PubMed ID: 24043860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the molecular interaction between the cyclic nucleotide-binding homology domain and the eag domain of the hERG channel.
    Li Q; Ng HQ; Yoon HS; Kang C
    FEBS Lett; 2014 Aug; 588(17):2782-8. PubMed ID: 24931372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating and regulation of KCNH (ERG, EAG, and ELK) channels by intracellular domains.
    Codding SJ; Johnson AA; Trudeau MC
    Channels (Austin); 2020 Dec; 14(1):294-309. PubMed ID: 32924766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin Regulates Human Ether à Go-Go 1 (hEAG1) Potassium Channels through Interactions of the Eag Domain with the Cyclic Nucleotide Binding Homology Domain.
    Lörinczi E; Helliwell M; Finch A; Stansfeld PJ; Davies NW; Mahaut-Smith M; Muskett FW; Mitcheson JS
    J Biol Chem; 2016 Aug; 291(34):17907-18. PubMed ID: 27325704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity.
    Wang ZJ; Soohoo SM; Tiwari PB; Piszczek G; Brelidze TI
    J Biol Chem; 2020 Mar; 295(13):4114-4123. PubMed ID: 32047112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavonoid regulation of EAG1 channels.
    Carlson AE; Brelidze TI; Zagotta WN
    J Gen Physiol; 2013 Mar; 141(3):347-58. PubMed ID: 23440277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (1)H, (13)C and (15)N chemical shift assignments for the cyclic-nucleotide binding homology domain of a KCNH channel.
    Li Q; Ng HQ; Kang C
    Biomol NMR Assign; 2015 Apr; 9(1):55-8. PubMed ID: 24414223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of KCNH2 cyclic nucleotide-binding homology domain reveals a functionally vital salt-bridge.
    Ben-Bassat A; Giladi M; Haitin Y
    J Gen Physiol; 2020 Apr; 152(4):. PubMed ID: 32191791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the PAS domain of the hEAG potassium channel.
    Tang X; Shao J; Qin X
    Acta Crystallogr F Struct Biol Commun; 2016 Aug; 72(Pt 8):578-85. PubMed ID: 27487920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.
    Lin TF; Jow GM; Fang HY; Fu SJ; Wu HH; Chiu MM; Jeng CJ
    PLoS One; 2014; 9(10):e110423. PubMed ID: 25333352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent activation in EAG channels follows a ligand-receptor rather than a mechanical-lever mechanism.
    Malak OA; Gluhov GS; Grizel AV; Kudryashova KS; Sokolova OS; Loussouarn G
    J Biol Chem; 2019 Apr; 294(16):6506-6521. PubMed ID: 30808709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural properties of PAS domains from the KCNH potassium channels.
    Adaixo R; Harley CA; Castro-Rodrigues AF; Morais-Cabral JH
    PLoS One; 2013; 8(3):e59265. PubMed ID: 23555008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel.
    Marques-Carvalho MJ; Sahoo N; Muskett FW; Vieira-Pires RS; Gabant G; Cadene M; Schönherr R; Morais-Cabral JH
    J Mol Biol; 2012 Oct; 423(1):34-46. PubMed ID: 22732247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of undecylenic acid as EAG channel inhibitor using surface plasmon resonance-based screen of KCNH channels.
    Wang ZJ; Tiwari PB; Üren A; Brelidze TI
    BMC Pharmacol Toxicol; 2019 Jul; 20(1):42. PubMed ID: 31315662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intrinsically liganded cyclic nucleotide-binding homology domain promotes KCNH channel activation.
    Zhao Y; Goldschen-Ohm MP; Morais-Cabral JH; Chanda B; Robertson GA
    J Gen Physiol; 2017 Feb; 149(2):249-260. PubMed ID: 28122815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the Cyclic Nucleotide-Binding Homology Domain of the hERG Channel and Its Insight into Type 2 Long QT Syndrome.
    Li Y; Ng HQ; Li Q; Kang C
    Sci Rep; 2016 Mar; 6():23712. PubMed ID: 27025590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism of voltage-dependent potentiation of KCNH potassium channels.
    Dai G; Zagotta WN
    Elife; 2017 Apr; 6():. PubMed ID: 28443815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HERG potassium channel regulation by the N-terminal eag domain.
    Gustina AS; Trudeau MC
    Cell Signal; 2012 Aug; 24(8):1592-8. PubMed ID: 22522181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.