These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23975152)

  • 1. Relation between gravitational and arm-movement direction in the mechanism of perception in bimanual steering.
    Sakajiri T; Tanaka Y; Sano A
    Exp Brain Res; 2013 Nov; 231(2):129-38. PubMed ID: 23975152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unified nature of bimanual movements revealed by separating the preparation of each arm.
    Blinch J; Franks IM; Carpenter MG; Chua R
    Exp Brain Res; 2015 Jun; 233(6):1931-44. PubMed ID: 25850406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force perceptual bias caused by muscle activity in unimanual steering.
    Kishishita Y; Tanaka Y; Kurita Y
    PLoS One; 2019; 14(10):e0223930. PubMed ID: 31639140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The right arm likes to be close.
    Graff-Radford J; Crucian GP; Heilman KM
    Cortex; 2006 Jul; 42(5):699-704. PubMed ID: 16909629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contralateral manual compensation for velocity-dependent force perturbations.
    Jackson CP; Miall RC
    Exp Brain Res; 2008 Jan; 184(2):261-7. PubMed ID: 17973103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimanual coupling effects during arm immobilization and passive movements.
    Garbarini F; Rabuffetti M; Piedimonte A; Solito G; Berti A
    Hum Mov Sci; 2015 Jun; 41():114-26. PubMed ID: 25797919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arm end-point trajectories under normal and micro-gravity environments.
    Papaxanthis C; Pozzo T; McIntyre J
    Acta Astronaut; 1998; 43(3-6):153-61. PubMed ID: 11541921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gain field encoding of the kinematics of both arms in the internal model enables flexible bimanual action.
    Yokoi A; Hirashima M; Nozaki D
    J Neurosci; 2011 Nov; 31(47):17058-68. PubMed ID: 22114275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between position sense and force control in bimanual tasks.
    Ballardini G; Ponassi V; Galofaro E; Carlini G; Marini F; Pellegrino L; Morasso P; Casadio M
    J Neuroeng Rehabil; 2019 Nov; 16(1):137. PubMed ID: 31703703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlimb transfer of visuomotor rotations: independence of direction and final position information.
    Sainburg RL; Wang J
    Exp Brain Res; 2002 Aug; 145(4):437-47. PubMed ID: 12172655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetrical and asymmetrical influences on force production in 1:2 and 2:1 bimanual force coordination tasks.
    Kennedy DM; Rhee J; Shea CH
    Exp Brain Res; 2016 Jan; 234(1):287-300. PubMed ID: 26466827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hand trajectories of vertical arm movements in one-G and zero-G environments. Evidence for a central representation of gravitational force.
    Papaxanthis C; Pozzo T; Popov KE; McIntyre J
    Exp Brain Res; 1998 Jun; 120(4):496-502. PubMed ID: 9655235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of movement direction upon kinematic characteristics of vertical arm pointing movements in man.
    Papaxanthis C; Pozzo T; Stapley P
    Neurosci Lett; 1998 Sep; 253(2):103-6. PubMed ID: 9774160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlimb coupling strength scales with movement amplitude.
    Peper CL; de Boer BJ; de Poel HJ; Beek PJ
    Neurosci Lett; 2008 May; 437(1):10-4. PubMed ID: 18423866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects.
    Pigeon P; Dizio P; Lackner JR
    J Neurophysiol; 2013 Sep; 110(6):1370-84. PubMed ID: 23803330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent adaptation to opposing visual displacements during an alternating movement.
    Galea JM; Miall RC
    Exp Brain Res; 2006 Nov; 175(4):676-88. PubMed ID: 16835793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed.
    Papaxanthis C; Pozzo T; Schieppati M
    Exp Brain Res; 2003 Feb; 148(4):498-503. PubMed ID: 12582833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context-dependent partitioning of motor learning in bimanual movements.
    Howard IS; Ingram JN; Wolpert DM
    J Neurophysiol; 2010 Oct; 104(4):2082-91. PubMed ID: 20685927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A guide to performing difficult bimanual coordination tasks: just follow the yellow brick road.
    Wang C; Kennedy DM; Boyle JB; Shea CH
    Exp Brain Res; 2013 Sep; 230(1):31-40. PubMed ID: 23811738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.