These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice. Iwata J; Suzuki A; Pelikan RC; Ho TV; Sanchez-Lara PA; Urata M; Dixon MJ; Chai Y Development; 2013 Mar; 140(6):1220-30. PubMed ID: 23406900 [TBL] [Abstract][Full Text] [Related]
9. TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate. Iwata J; Suzuki A; Yokota T; Ho TV; Pelikan R; Urata M; Sanchez-Lara PA; Chai Y Development; 2014 Feb; 141(4):909-17. PubMed ID: 24496627 [TBL] [Abstract][Full Text] [Related]
10. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development. Song Z; Liu C; Iwata J; Gu S; Suzuki A; Sun C; He W; Shu R; Li L; Chai Y; Chen Y J Biol Chem; 2013 Apr; 288(15):10440-50. PubMed ID: 23460641 [TBL] [Abstract][Full Text] [Related]
11. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion. Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827 [TBL] [Abstract][Full Text] [Related]
13. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development. Ho TV; Iwata J; Ho HA; Grimes WC; Park S; Sanchez-Lara PA; Chai Y Dev Biol; 2015 Apr; 400(2):180-90. PubMed ID: 25722190 [TBL] [Abstract][Full Text] [Related]
14. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells. Yumoto K; Thomas PS; Lane J; Matsuzaki K; Inagaki M; Ninomiya-Tsuji J; Scott GJ; Ray MK; Ishii M; Maxson R; Mishina Y; Kaartinen V J Biol Chem; 2013 May; 288(19):13467-80. PubMed ID: 23546880 [TBL] [Abstract][Full Text] [Related]
15. Activation of sonic hedgehog signaling by a Smoothened agonist restores congenital defects in mouse models of endocrine-cerebro-osteodysplasia syndrome. Shin JO; Song J; Choi HS; Lee J; Lee K; Ko HW; Bok J EBioMedicine; 2019 Nov; 49():305-317. PubMed ID: 31662288 [TBL] [Abstract][Full Text] [Related]
16. Epithelial Transforming Growth Factor-β Signaling Does Not Contribute to Liver Fibrosis but Protects Mice From Cholangiocarcinoma. Mu X; Pradere JP; Affò S; Dapito DH; Friedman R; Lefkovitch JH; Schwabe RF Gastroenterology; 2016 Mar; 150(3):720-33. PubMed ID: 26627606 [TBL] [Abstract][Full Text] [Related]
17. TGFbeta-mediated FGF signaling is crucial for regulating cranial neural crest cell proliferation during frontal bone development. Sasaki T; Ito Y; Bringas P; Chou S; Urata MM; Slavkin H; Chai Y Development; 2006 Jan; 133(2):371-81. PubMed ID: 16368934 [TBL] [Abstract][Full Text] [Related]
18. Transforming Growth Factor β Signaling in Colorectal Cancer Cells With Microsatellite Instability Despite Biallelic Mutations in TGFBR2. de Miranda NF; van Dinther M; van den Akker BE; van Wezel T; ten Dijke P; Morreau H Gastroenterology; 2015 Jun; 148(7):1427-37.e8. PubMed ID: 25736321 [TBL] [Abstract][Full Text] [Related]
19. TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner. Zhao H; Oka K; Bringas P; Kaartinen V; Chai Y Dev Biol; 2008 Aug; 320(1):19-29. PubMed ID: 18572160 [TBL] [Abstract][Full Text] [Related]
20. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. Iwata J; Hosokawa R; Sanchez-Lara PA; Urata M; Slavkin H; Chai Y J Biol Chem; 2010 Feb; 285(7):4975-82. PubMed ID: 19959467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]