These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 23975762)

  • 21. MetaPocket: a meta approach to improve protein ligand binding site prediction.
    Huang B
    OMICS; 2009 Aug; 13(4):325-30. PubMed ID: 19645590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. I-TASSER server: new development for protein structure and function predictions.
    Yang J; Zhang Y
    Nucleic Acids Res; 2015 Jul; 43(W1):W174-81. PubMed ID: 25883148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arby: automatic protein structure prediction using profile-profile alignment and confidence measures.
    von Ohsen N; Sommer I; Zimmer R; Lengauer T
    Bioinformatics; 2004 Sep; 20(14):2228-35. PubMed ID: 15059818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cysteine separations profiles on protein sequences infer disulfide connectivity.
    Zhao E; Liu HL; Tsai CH; Tsai HK; Chan CH; Kao CY
    Bioinformatics; 2005 Apr; 21(8):1415-20. PubMed ID: 15585533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CoABind: a novel algorithm for Coenzyme A (CoA)- and CoA derivatives-binding residues prediction.
    Meng Q; Peng Z; Yang J
    Bioinformatics; 2018 Aug; 34(15):2598-2604. PubMed ID: 29547921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving Sequence-Based Prediction of Protein-Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method.
    Zhao Z; Peng Z; Yang J
    J Chem Inf Model; 2018 Jul; 58(7):1459-1468. PubMed ID: 29895149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. I-TASSER: a unified platform for automated protein structure and function prediction.
    Roy A; Kucukural A; Zhang Y
    Nat Protoc; 2010 Apr; 5(4):725-38. PubMed ID: 20360767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.
    Zhang C; Zheng W; Freddolino PL; Zhang Y
    J Mol Biol; 2018 Jul; 430(15):2256-2265. PubMed ID: 29534977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CLIPS-1D: analysis of multiple sequence alignments to deduce for residue-positions a role in catalysis, ligand-binding, or protein structure.
    Janda JO; Busch M; Kück F; Porfenenko M; Merkl R
    BMC Bioinformatics; 2012 Apr; 13():55. PubMed ID: 22480135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confirmation of data mining based predictions of protein function.
    King RD; Wise PH; Clare A
    Bioinformatics; 2004 May; 20(7):1110-8. PubMed ID: 14764546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein ligand-specific binding residue predictions by an ensemble classifier.
    Hu X; Wang K; Dong Q
    BMC Bioinformatics; 2016 Nov; 17(1):470. PubMed ID: 27855637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. I-TASSER server for protein 3D structure prediction.
    Zhang Y
    BMC Bioinformatics; 2008 Jan; 9():40. PubMed ID: 18215316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D-Jury: a simple approach to improve protein structure predictions.
    Ginalski K; Elofsson A; Fischer D; Rychlewski L
    Bioinformatics; 2003 May; 19(8):1015-8. PubMed ID: 12761065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The AnnoLite and AnnoLyze programs for comparative annotation of protein structures.
    Marti-Renom MA; Rossi A; Al-Shahrour F; Davis FP; Pieper U; Dopazo J; Sali A
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S4. PubMed ID: 17570147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DOMAC: an accurate, hybrid protein domain prediction server.
    Cheng J
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W354-6. PubMed ID: 17553833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins.
    Zhang C; Zheng W; Mortuza SM; Li Y; Zhang Y
    Bioinformatics; 2020 Apr; 36(7):2105-2112. PubMed ID: 31738385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.