These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

850 related articles for article (PubMed ID: 23975789)

  • 61. Interpreting and visualizing ChIP-seq data with the seqMINER software.
    Ye T; Ravens S; Krebs AR; Tora L
    Methods Mol Biol; 2014; 1150():141-52. PubMed ID: 24743995
    [TBL] [Abstract][Full Text] [Related]  

  • 62. From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites.
    Kulakovskiy I; Levitsky V; Oshchepkov D; Bryzgalov L; Vorontsov I; Makeev V
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340004. PubMed ID: 23427986
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A widespread distribution of genomic CeMyoD binding sites revealed and cross validated by ChIP-Chip and ChIP-Seq techniques.
    Lei H; Fukushige T; Niu W; Sarov M; Reinke V; Krause M
    PLoS One; 2010 Dec; 5(12):e15898. PubMed ID: 21209968
    [TBL] [Abstract][Full Text] [Related]  

  • 64. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chromatin Immunoprecipitation: Application to the Study of Asthma.
    García-Sánchez A; Marqués-García F
    Methods Mol Biol; 2016; 1434():121-37. PubMed ID: 27300535
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chromatin immunoprecipitation-based analysis of gene regulatory networks operative in human embryonic stem cells.
    Jung M; Adjaye J
    Methods Mol Biol; 2012; 873():269-80. PubMed ID: 22528362
    [TBL] [Abstract][Full Text] [Related]  

  • 67. ChIP-Seq: A Powerful Tool for Studying Protein-DNA Interactions in Plants.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2018; 27():171-180. PubMed ID: 28885181
    [TBL] [Abstract][Full Text] [Related]  

  • 68. ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks.
    Wang P; Qin J; Qin Y; Zhu Y; Wang LY; Li MJ; Zhang MQ; Wang J
    Nucleic Acids Res; 2015 Jul; 43(W1):W264-9. PubMed ID: 25916854
    [TBL] [Abstract][Full Text] [Related]  

  • 69. ChIP-chip for genome-wide analysis of protein binding in mammalian cells.
    Kim TH; Barrera LO; Ren B
    Curr Protoc Mol Biol; 2007 Jul; Chapter 21():Unit 21.13. PubMed ID: 18265397
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A resource for characterizing genome-wide binding and putative target genes of transcription factors expressed during secondary growth and wood formation in Populus.
    Liu L; Ramsay T; Zinkgraf M; Sundell D; Street NR; Filkov V; Groover A
    Plant J; 2015 Jun; 82(5):887-98. PubMed ID: 25903933
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks.
    Hansen P; Hecht J; Ibrahim DM; Krannich A; Truss M; Robinson PN
    Genome Res; 2015 Sep; 25(9):1391-400. PubMed ID: 26163319
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Discovering CsgD Regulatory Targets in Salmonella Biofilm Using Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-seq).
    Palmer MB; Wang Y; White AP
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32009660
    [TBL] [Abstract][Full Text] [Related]  

  • 73. DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants.
    Posé D; Yant L
    Methods Mol Biol; 2016; 1363():25-35. PubMed ID: 26577778
    [TBL] [Abstract][Full Text] [Related]  

  • 74. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data.
    Chung D; Park D; Myers K; Grass J; Kiley P; Landick R; Keleş S
    PLoS Comput Biol; 2013; 9(10):e1003246. PubMed ID: 24146601
    [TBL] [Abstract][Full Text] [Related]  

  • 75. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis.
    Chabbert CD; Adjalley SH; Steinmetz LM; Pelechano V
    Methods Mol Biol; 2018; 1689():177-194. PubMed ID: 29027175
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data.
    Goi C; Little P; Xie C
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S2. PubMed ID: 24564528
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
    Soyer JL; Möller M; Schotanus K; Connolly LR; Galazka JM; Freitag M; Stukenbrock EH
    Fungal Genet Biol; 2015 Jun; 79():63-70. PubMed ID: 25857259
    [TBL] [Abstract][Full Text] [Related]  

  • 79. ChIP-Seq: a method for global identification of regulatory elements in the genome.
    Raha D; Hong M; Snyder M
    Curr Protoc Mol Biol; 2010 Jul; Chapter 21():Unit 21.19.1-14. PubMed ID: 20583098
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mapping Transcription Regulatory Networks with ChIP-seq and RNA-seq.
    Wade JT
    Adv Exp Med Biol; 2015; 883():119-34. PubMed ID: 26621465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.