BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23976961)

  • 1. Synchronization, slippage, and unbundling of driven helical flagella.
    Reigh SY; Winkler RG; Gompper G
    PLoS One; 2013; 8(8):e70868. PubMed ID: 23976961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizobium meliloti swims by unidirectional, intermittent rotation of right-handed flagellar helices.
    Götz R; Schmitt R
    J Bacteriol; 1987 Jul; 169(7):3146-50. PubMed ID: 3597320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotation-induced polymorphic transitions in bacterial flagella.
    Vogel R; Stark H
    Phys Rev Lett; 2013 Apr; 110(15):158104. PubMed ID: 25167316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti.
    Attmannspacher U; Scharf B; Schmitt R
    Mol Microbiol; 2005 May; 56(3):708-18. PubMed ID: 15819626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On torque and tumbling in swimming Escherichia coli.
    Darnton NC; Turner L; Rojevsky S; Berg HC
    J Bacteriol; 2007 Mar; 189(5):1756-64. PubMed ID: 17189361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Torque-induced precession of bacterial flagella.
    Shimogonya Y; Sawano Y; Wakebe H; Inoue Y; Ishijima A; Ishikawa T
    Sci Rep; 2015 Dec; 5():18488. PubMed ID: 26691402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of body rotation in bacterial flagellar bundling.
    Powers TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):040903. PubMed ID: 12005799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse graining Escherichia coli chemotaxis: from multi-flagella propulsion to logarithmic sensing.
    Curk T; Matthäus F; Brill-Karniely Y; Dobnikar J
    Adv Exp Med Biol; 2012; 736():381-96. PubMed ID: 22161341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bead-spring model for running and tumbling of flagellated swimmers: detailed predictions compared to experimental data for E. coli.
    Kong M; Wu Y; Li G; Larson RG
    Soft Matter; 2015 Feb; 11(8):1572-81. PubMed ID: 25591165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory transduction to the flagellar motor of Sinorhizobium meliloti.
    Scharf B; Schmitt R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):183-6. PubMed ID: 11931544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torque generated by the flagellar motor of Escherichia coli while driven backward.
    Berry RM; Berg HC
    Biophys J; 1999 Jan; 76(1 Pt 1):580-7. PubMed ID: 9876171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hydrodynamics of a run-and-tumble bacterium propelled by polymorphic helical flagella.
    Watari N; Larson RG
    Biophys J; 2010 Jan; 98(1):12-7. PubMed ID: 20074512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti.
    Sourjik V; Schmitt R
    Mol Microbiol; 1996 Nov; 22(3):427-36. PubMed ID: 8939427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexistence of tight and loose bundled states in a model of bacterial flagellar dynamics.
    Janssen PJ; Graham MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011910. PubMed ID: 21867216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a bacterial flagellum under reverse rotation.
    Adhyapak TC; Stark H
    Soft Matter; 2016 Jul; 12(25):5621-9. PubMed ID: 27265475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the torque of the bacterial flagellar motor using a rotating electric field.
    Iwazawa J; Imae Y; Kobayasi S
    Biophys J; 1993 Mar; 64(3):925-33. PubMed ID: 8471735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between bacteriophage chi adsorption and mode of flagellar rotation of Escherichia coli chemotaxis mutants.
    Ravid S; Eisenbach M
    J Bacteriol; 1983 May; 154(2):604-11. PubMed ID: 6341356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic interactions between rotating helices.
    Kim M; Powers TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061910. PubMed ID: 15244620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamics and direction change of tumbling bacteria.
    Dvoriashyna M; Lauga E
    PLoS One; 2021; 16(7):e0254551. PubMed ID: 34283850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotation Measurements of Tethered Cells.
    Inoue Y
    Methods Mol Biol; 2017; 1593():163-174. PubMed ID: 28389952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.