These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23976962)

  • 1. Are Namibian "fairy circles" the consequence of self-organizing spatial vegetation patterning?
    Cramer MD; Barger NN
    PLoS One; 2013; 8(8):e70876. PubMed ID: 23976962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experiments Testing the Causes of Namibian Fairy Circles.
    Tschinkel WR
    PLoS One; 2015; 10(10):e0140099. PubMed ID: 26510015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fairy circles in Namibia are assembled from genetically distinct grasses.
    Kappel C; Illing N; Huu CN; Barger NN; Cramer MD; Lenhard M; Midgley JJ
    Commun Biol; 2020 Nov; 3(1):698. PubMed ID: 33219348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of fairy circles in Australia supports self-organization theory.
    Getzin S; Yizhaq H; Bell B; Erickson TE; Postle AC; Katra I; Tzuk O; Zelnik YR; Wiegand K; Wiegand T; Meron E
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3551-6. PubMed ID: 26976567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do high soil temperatures on Namibian fairy circle discs explain the absence of vegetation?
    Vlieghe K; Picker M
    PLoS One; 2019; 14(5):e0217153. PubMed ID: 31107927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The life cycle and life span of Namibian fairy circles.
    Tschinkel WR
    PLoS One; 2012; 7(6):e38056. PubMed ID: 22761663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradual regime shifts in fairy circles.
    Zelnik YR; Meron E; Bel G
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12327-31. PubMed ID: 26362787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The allelopathic, adhesive, hydrophobic and toxic latex of Euphorbia species is the cause of fairy circles investigated at several locations in Namibia.
    Meyer JJM; Schutte CE; Hurter JW; Galt NS; Degashu P; Breetzke G; Baranenko D; Meyer NL
    BMC Ecol; 2020 Aug; 20(1):45. PubMed ID: 32746816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia grasslands, China.
    Kang M; Dai C; Ji W; Jiang Y; Yuan Z; Chen HY
    PLoS One; 2013; 8(7):e69561. PubMed ID: 23936045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing soil microbes that drive fairy ring patterns in temperate semiarid grasslands.
    Li J; Guo L; Wilson GWT; Cobb AB; Wang K; Liu L; Zhao H; Huang D
    BMC Ecol Evol; 2022 Nov; 22(1):130. PubMed ID: 36335298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique Microbial Phylotypes in Namib Desert Dune and Gravel Plain Fairy Circle Soils.
    van der Walt AJ; Johnson RM; Cowan DA; Seely M; Ramond JB
    Appl Environ Microbiol; 2016 Aug; 82(15):4592-4601. PubMed ID: 27208111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field measurements of soil CO2 efflux in Heteropogon contortus dominated grassland of semi-arid eco-system.
    Saraswathi SG; Paliwal K
    J Environ Biol; 2011 May; 32(3):333-7. PubMed ID: 22167946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution at the arid extreme: the influence of climate on sand termite colonies and fairy circles of the Namib Desert.
    Juergens N; Groengroeft A; Gunter F
    Philos Trans R Soc Lond B Biol Sci; 2023 Aug; 378(1884):20220149. PubMed ID: 37427480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States.
    Gremer JR; Bradford JB; Munson SM; Duniway MC
    Glob Chang Biol; 2015 Nov; 21(11):4049-62. PubMed ID: 26183431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.
    Cusack DF; Lee JK; McCleery TL; LeCroy CS
    Glob Chang Biol; 2015 Dec; 21(12):4481-96. PubMed ID: 26297074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant response traits mediate the effects of subalpine grasslands on soil moisture.
    Gross N; Robson TM; Lavorel S; Albert C; Le Bagousse-Pinguet Y; Guillemin R
    New Phytol; 2008; 180(3):652-662. PubMed ID: 18657216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts.
    Rao LE; Allen EB
    Oecologia; 2010 Apr; 162(4):1035-46. PubMed ID: 19967416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland.
    Throop HL; Reichmann LG; Sala OE; Archer SR
    Oecologia; 2012 Jun; 169(2):373-83. PubMed ID: 22159870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a coupled dynamic factor - random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa.
    Southworth J; Bunting E; Zhu L; Ryan SJ; Herrero HV; Waylen P; Muñoz-Carpena R; Campo-Bescós MA; Kaplan D
    PLoS One; 2018; 13(12):e0208400. PubMed ID: 30550542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China.
    Jia X; Xie B; Shao M; Zhao C
    PLoS One; 2015; 10(8):e0135490. PubMed ID: 26295954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.