BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23977123)

  • 1. Machine learning of hierarchical clustering to segment 2D and 3D images.
    Nunez-Iglesias J; Kennedy R; Parag T; Shi J; Chklovskii DB
    PLoS One; 2013; 8(8):e71715. PubMed ID: 23977123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A context-aware delayed agglomeration framework for electron microscopy segmentation.
    Parag T; Chakraborty A; Plaza S; Scheffer L
    PLoS One; 2015; 10(5):e0125825. PubMed ID: 26018659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modular hierarchical approach to 3D electron microscopy image segmentation.
    Liu T; Jones C; Seyedhosseini M; Tasdizen T
    J Neurosci Methods; 2014 Apr; 226():88-102. PubMed ID: 24491638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical level features based trainable segmentation for electron microscopy images.
    Wang S; Cao G; Wei B; Yin Y; Yang G; Li C
    Biomed Eng Online; 2013 Jun; 12():59. PubMed ID: 23805885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation in large-scale cellular electron microscopy with deep learning: A literature survey.
    Aswath A; Alsahaf A; Giepmans BNG; Azzopardi G
    Med Image Anal; 2023 Oct; 89():102920. PubMed ID: 37572414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense cellular segmentation for EM using 2D-3D neural network ensembles.
    Guay MD; Emam ZAS; Anderson AB; Aronova MA; Pokrovskaya ID; Storrie B; Leapman RD
    Sci Rep; 2021 Jan; 11(1):2561. PubMed ID: 33510185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation of diffusion-weighted brain images using expectation maximization algorithm initialized by hierarchical clustering.
    Lu CF; Wang PS; Chou YC; Li HC; Soong BW; Wu YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5502-5. PubMed ID: 19163963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria Segmentation From EM Images via Hierarchical Structured Contextual Forest.
    Peng J; Yuan Z
    IEEE J Biomed Health Inform; 2020 Aug; 24(8):2251-2259. PubMed ID: 31871001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages.
    Nunez-Iglesias J; Kennedy R; Plaza SM; Chakraborty A; Katz WT
    Front Neuroinform; 2014; 8():34. PubMed ID: 24772079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross modality deformable segmentation using hierarchical clustering and learning.
    Zhan Y; Dewan M; Zhou XS
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):1033-41. PubMed ID: 20426213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LEGClust- a clustering algorithm based on layered entropic subgraphs.
    Santos JM; Marques de Sa J; Alexandre LA
    IEEE Trans Pattern Anal Mach Intell; 2008 Jan; 30(1):62-75. PubMed ID: 18000325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional networks can learn to generate affinity graphs for image segmentation.
    Turaga SC; Murray JF; Jain V; Roth F; Helmstaedter M; Briggman K; Denk W; Seung HS
    Neural Comput; 2010 Feb; 22(2):511-38. PubMed ID: 19922289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning approach using synthetic images for segmenting and estimating 3D orientation of nanoparticles in EM images.
    Cid-Mejías A; Alonso-Calvo R; Gavilán H; Crespo J; Maojo V
    Comput Methods Programs Biomed; 2021 Apr; 202():105958. PubMed ID: 33588253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features.
    Lucchi A; Smith K; Achanta R; Knott G; Fua P
    IEEE Trans Med Imaging; 2012 Feb; 31(2):474-86. PubMed ID: 21997252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.
    Reboul CF; Bonnet F; Elmlund D; Elmlund H
    Structure; 2016 Jun; 24(6):988-96. PubMed ID: 27184214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning to segment neurons with non-local quality measures.
    Kroeger T; Mikula S; Denk W; Koethe U; Hamprecht FA
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):419-27. PubMed ID: 24579168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small sample learning of superpixel classifiers for EM segmentation.
    Parag T; Plaza S; Scheffer L
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):389-97. PubMed ID: 25333142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.