BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23977203)

  • 21. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates.
    Krishnamurthy H; Lou H; Kimple A; Vieille C; Cukier RI
    Proteins; 2005 Jan; 58(1):88-100. PubMed ID: 15521058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleotide sequence of aceK, the gene encoding isocitrate dehydrogenase kinase/phosphatase.
    Klumpp DJ; Plank DW; Bowdin LJ; Stueland CS; Chung T; LaPorte DC
    J Bacteriol; 1988 Jun; 170(6):2763-9. PubMed ID: 2836370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics.
    Nakanishi-Matsui M; Sekiya M; Futai M
    IUBMB Life; 2013 Mar; 65(3):247-54. PubMed ID: 23441040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple catalytic activities of Escherichia coli lysyl-tRNA synthetase (LysU) are dissected by site-directed mutagenesis.
    Chen X; Boonyalai N; Lau C; Thipayang S; Xu Y; Wright M; Miller AD
    FEBS J; 2013 Jan; 280(1):102-14. PubMed ID: 23121660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loop conformation and dynamics of the Escherichia coli HPPK apo-enzyme and its binary complex with MgATP.
    Yang R; Lee MC; Yan H; Duan Y
    Biophys J; 2005 Jul; 89(1):95-106. PubMed ID: 15821168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A QM/MM investigation of the catalytic mechanism of metal-ion-independent core 2 β1,6-N-acetylglucosaminyltransferase.
    Tvaroška I; Kozmon S; Wimmerová M; Koča J
    Chemistry; 2013 Jun; 19(25):8153-62. PubMed ID: 23616464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A QM/MM study of the catalytic mechanism of aspartate ammonia lyase.
    Zhang J; Liu Y
    J Mol Graph Model; 2014 Jun; 51():113-9. PubMed ID: 24875395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleotide sequence and expression of the aceK gene coding for isocitrate dehydrogenase kinase/phosphatase in Escherichia coli.
    Cortay JC; Bleicher F; Rieul C; Reeves HC; Cozzone AJ
    J Bacteriol; 1988 Jan; 170(1):89-97. PubMed ID: 2826408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the phosphoryl transfer mechanism of cyclin-dependent protein kinases from ab initio QM/MM free-energy studies.
    Smith GK; Ke Z; Guo H; Hengge AC
    J Phys Chem B; 2011 Nov; 115(46):13713-22. PubMed ID: 21999515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the roles of conserved residues in uridyltransferase domain of Escherichia coli K12 GlmU by site-directed mutagenesis.
    Wang S; Fu X; Liu Y; Liu XW; Wang L; Fang J; Wang PG
    Carbohydr Res; 2015 Sep; 413():70-4. PubMed ID: 26101844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GlmU (N-acetylglucosamine-1-phosphate uridyltransferase) bound to three magnesium ions and ATP at the active site.
    Vithani N; Bais V; Prakash B
    Acta Crystallogr F Struct Biol Commun; 2014 Jun; 70(Pt 6):703-8. PubMed ID: 24915076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Asp122 Mutation on the Hydride Transfer in E. coli DHFR Demonstrates the Goldilocks of Enzyme Flexibility.
    Mhashal AR; Pshetitsky Y; Eitan R; Cheatum CM; Kohen A; Major DT
    J Phys Chem B; 2018 Aug; 122(33):8006-8017. PubMed ID: 30040418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.
    Shi R; McDonald L; Cui Q; Matte A; Cygler M; Ekiel I
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1302-7. PubMed ID: 21209328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of proton wires in the enzyme active site suggests a mechanism of c-di-GMP hydrolysis by the EAL domain phosphodiesterases.
    Grigorenko BL; Knyazeva MA; Nemukhin AV
    Proteins; 2016 Nov; 84(11):1670-1680. PubMed ID: 27479508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escherichia coli FolC structure reveals an unexpected dihydrofolate binding site providing an attractive target for anti-microbial therapy.
    Mathieu M; Debousker G; Vincent S; Viviani F; Bamas-Jacques N; Mikol V
    J Biol Chem; 2005 May; 280(19):18916-22. PubMed ID: 15705579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnesium coordination controls the molecular switch function of DNA mismatch repair protein MutS.
    Lebbink JH; Fish A; Reumer A; Natrajan G; Winterwerp HH; Sixma TK
    J Biol Chem; 2010 Apr; 285(17):13131-41. PubMed ID: 20167596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of histidine-85 in the catalytic mechanism of thymidine phosphorylase as assessed by targeted molecular dynamics simulations and quantum mechanical calculations.
    Mendieta J; Martín-Santamaría S; Priego EM; Balzarini J; Camarasa MJ; Pérez-Pérez MJ; Gago F
    Biochemistry; 2004 Jan; 43(2):405-14. PubMed ID: 14717594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.