BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23977341)

  • 1. Replication-independent endogenous DNA double-strand breaks in Saccharomyces cerevisiae model.
    Thongsroy J; Matangkasombut O; Thongnak A; Rattanatanyong P; Jirawatnotai S; Mutirangura A
    PLoS One; 2013; 8(8):e72706. PubMed ID: 23977341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of replication-independent endogenous double-strand breaks in Saccharomyces cerevisiae.
    Pongpanich M; Patchsung M; Thongsroy J; Mutirangura A
    BMC Genomics; 2014 Sep; 15(1):750. PubMed ID: 25179264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication independent DNA double-strand break retention may prevent genomic instability.
    Kongruttanachok N; Phuangphairoj C; Thongnak A; Ponyeam W; Rattanatanyong P; Pornthanakasem W; Mutirangura A
    Mol Cancer; 2010 Mar; 9():70. PubMed ID: 20356374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction in replication-independent endogenous DNA double-strand breaks promotes genomic instability during chronological aging in yeast.
    Thongsroy J; Patchsung M; Pongpanich M; Settayanon S; Mutirangura A
    FASEB J; 2018 May; ():fj201800218RR. PubMed ID: 29812972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathologic Replication-Independent Endogenous DNA Double-Strand Breaks Repair Defect in Chronological Aging Yeast.
    Pongpanich M; Patchsung M; Mutirangura A
    Front Genet; 2018; 9():501. PubMed ID: 30410502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LINE-1 methylation status of endogenous DNA double-strand breaks.
    Pornthanakasem W; Kongruttanachok N; Phuangphairoj C; Suyarnsestakorn C; Sanghangthum T; Oonsiri S; Ponyeam W; Thanasupawat T; Matangkasombut O; Mutirangura A
    Nucleic Acids Res; 2008 Jun; 36(11):3667-75. PubMed ID: 18474527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential requirement for SUB1 in chromosomal and plasmid double-strand DNA break repair.
    Yu L; Volkert MR
    PLoS One; 2013; 8(3):e58015. PubMed ID: 23554872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates.
    Bärtsch S; Kang LE; Symington LS
    Mol Cell Biol; 2000 Feb; 20(4):1194-205. PubMed ID: 10648605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.
    Lewis LK; Westmoreland JW; Resnick MA
    Genetics; 1999 Aug; 152(4):1513-29. PubMed ID: 10430580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins.
    Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA
    PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitation and analysis of the formation of HO-endonuclease stimulated chromosomal translocations by single-strand annealing in Saccharomyces cerevisiae.
    Liddell L; Manthey G; Pannunzio N; Bailis A
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overhang polarity of chromosomal double-strand breaks impacts kinetics and fidelity of yeast non-homologous end joining.
    Liang Z; Sunder S; Nallasivam S; Wilson TE
    Nucleic Acids Res; 2016 Apr; 44(6):2769-81. PubMed ID: 26773053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of DNA end resection by yeast Hmo1p affects efficiency of DNA end-joining.
    Panday A; Xiao L; Gupta A; Grove A
    DNA Repair (Amst); 2017 May; 53():15-23. PubMed ID: 28336179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-homologous end joining is important for repair of Cr(VI)-induced DNA damage in Saccharomyces cerevisiae.
    Santoyo G; Strathern JN
    Microbiol Res; 2008; 163(1):113-9. PubMed ID: 17923397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proofreading activity of DNA polymerase Pol2 mediates 3'-end processing during nonhomologous end joining in yeast.
    Tseng SF; Gabriel A; Teng SC
    PLoS Genet; 2008 Apr; 4(4):e1000060. PubMed ID: 18437220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences.
    Ma JL; Kim EM; Haber JE; Lee SE
    Mol Cell Biol; 2003 Dec; 23(23):8820-8. PubMed ID: 14612421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks.
    Shim EY; Ma JL; Oum JH; Yanez Y; Lee SE
    Mol Cell Biol; 2005 May; 25(10):3934-44. PubMed ID: 15870268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate repair of non-cohesive, double strand breaks in Saccharomyces cerevisiae: enhancement by homology-assisted end-joining.
    Moscariello M; Florio C; Pulitzer JF
    Yeast; 2010 Oct; 27(10):837-48. PubMed ID: 20641028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer.
    Vilenchik MM; Knudson AG
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12871-6. PubMed ID: 14566050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks.
    Sasaki M; Kobayashi T
    Mol Cell; 2017 May; 66(4):533-545.e5. PubMed ID: 28525744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.