BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 23977949)

  • 1. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas.
    Farzadfard F; Perli SD; Lu TK
    ACS Synth Biol; 2013 Oct; 2(10):604-13. PubMed ID: 23977949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Randomized CRISPR-Cas Transcriptional Perturbation Screening Reveals Protective Genes against Alpha-Synuclein Toxicity.
    Chen YC; Farzadfard F; Gharaei N; Chen WCW; Cao J; Lu TK
    Mol Cell; 2017 Oct; 68(1):247-257.e5. PubMed ID: 28985507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Cell Communication in Yeast Using Auxin Biosynthesis and Auxin Responsive CRISPR Transcription Factors.
    Khakhar A; Bolten NJ; Nemhauser J; Klavins E
    ACS Synth Biol; 2016 Apr; 5(4):279-86. PubMed ID: 26102245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells.
    Nissim L; Perli SD; Fridkin A; Perez-Pinera P; Lu TK
    Mol Cell; 2014 May; 54(4):698-710. PubMed ID: 24837679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffold RNA engineering in type V CRISPR-Cas systems: a potent way to enhance gene expression in the yeast Saccharomyces cerevisiae.
    Yu L; Marchisio MA
    Nucleic Acids Res; 2024 Feb; 52(3):1483-1497. PubMed ID: 38142459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Digital Circuits Based on CRISPR-Cas Systems and Anti-CRISPR Proteins.
    Yu L; Zhang Y; Marchisio MA
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36342156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates.
    Gander MW; Vrana JD; Voje WE; Carothers JM; Klavins E
    Nat Commun; 2017 May; 8():15459. PubMed ID: 28541304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas type II-based Synthetic Biology applications in eukaryotic cells.
    Marchisio MA; Huang Z
    RNA Biol; 2017 Oct; 14(10):1286-1293. PubMed ID: 28136159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors.
    Kar S; Bordiya Y; Rodriguez N; Kim J; Gardner EC; Gollihar JD; Sung S; Ellington AD
    Plant Methods; 2022 Mar; 18(1):42. PubMed ID: 35351174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. gDesigner: computational design of synthetic gRNAs for Cas12a-based transcriptional repression in mammalian cells.
    Crone MA; MacDonald JT; Freemont PS; Siciliano V
    NPJ Syst Biol Appl; 2022 Sep; 8(1):34. PubMed ID: 36114193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds.
    Zalatan JG; Lee ME; Almeida R; Gilbert LA; Whitehead EH; La Russa M; Tsai JC; Weissman JS; Dueber JE; Qi LS; Lim WA
    Cell; 2015 Jan; 160(1-2):339-50. PubMed ID: 25533786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in
    Dong C; Jiang L; Xu S; Huang L; Cai J; Lian J; Xu Z
    ACS Synth Biol; 2020 Sep; 9(9):2252-2257. PubMed ID: 32841560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal Modular Gene Repression in Escherichia coli Using Engineered CRISPR/Cas9.
    Didovyk A; Borek B; Hasty J; Tsimring L
    ACS Synth Biol; 2016 Jan; 5(1):81-8. PubMed ID: 26390083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction.
    Fontana J; Voje WE; Zalatan JG; Carothers JM
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):481-490. PubMed ID: 29740742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.
    Mans R; van Rossum HM; Wijsman M; Backx A; Kuijpers NG; van den Broek M; Daran-Lapujade P; Pronk JT; van Maris AJ; Daran JM
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25743786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.
    Cress BF; Toparlak ÖD; Guleria S; Lebovich M; Stieglitz JT; Englaender JA; Jones JA; Linhardt RJ; Koffas MA
    ACS Synth Biol; 2015 Sep; 4(9):987-1000. PubMed ID: 25822415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells.
    Ma D; Peng S; Xie Z
    Nat Commun; 2016 Oct; 7():13056. PubMed ID: 27694915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.
    Kang HS; Charlop-Powers Z; Brady SF
    ACS Synth Biol; 2016 Sep; 5(9):1002-10. PubMed ID: 27197732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors.
    Naseri G; Behrend J; Rieper L; Mueller-Roeber B
    Nat Commun; 2019 Jun; 10(1):2615. PubMed ID: 31197154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synthetic biology framework for programming eukaryotic transcription functions.
    Khalil AS; Lu TK; Bashor CJ; Ramirez CL; Pyenson NC; Joung JK; Collins JJ
    Cell; 2012 Aug; 150(3):647-58. PubMed ID: 22863014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.