BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23978233)

  • 21. High-Indexed PtNi Alloy Skin Spiraled on Pd Nanowires for Highly Efficient Oxygen Reduction Reaction Catalysis.
    Zhao Y; Tao L; Dang W; Wang L; Xia M; Wang B; Liu M; Gao F; Zhang J; Zhao Y
    Small; 2019 Apr; 15(17):e1900288. PubMed ID: 30920760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness.
    Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y
    Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction.
    Koenigsmann C; Santulli AC; Gong K; Vukmirovic MB; Zhou WP; Sutter E; Wong SS; Adzic RR
    J Am Chem Soc; 2011 Jun; 133(25):9783-95. PubMed ID: 21644515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active and selective conversion of CO2 to CO on ultrathin Au nanowires.
    Zhu W; Zhang YJ; Zhang H; Lv H; Li Q; Michalsky R; Peterson AA; Sun S
    J Am Chem Soc; 2014 Nov; 136(46):16132-5. PubMed ID: 25380393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomically Dispersed Pt on Screw-like Pd/Au Core-shell Nanowires for Enhanced Electrocatalysis.
    Chao T; Zhang Y; Hu Y; Zheng X; Qu Y; Xu Q; Hong X
    Chemistry; 2020 Mar; 26(18):4019-4024. PubMed ID: 31571290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.
    Ye F; Liu H; Hu W; Zhong J; Chen Y; Cao H; Yang J
    Dalton Trans; 2012 Mar; 41(10):2898-903. PubMed ID: 22261896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambient surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires.
    Koenigsmann C; Santulli AC; Sutter E; Wong SS
    ACS Nano; 2011 Sep; 5(9):7471-87. PubMed ID: 21875051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells.
    Zhang Z; Li M; Wu Z; Li W
    Nanotechnology; 2011 Jan; 22(1):015602. PubMed ID: 21135465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of AgX nanowires into Ag derivative nano/microtubes for highly efficient visible-light photocatalysts.
    Choi WS; Byun GY; Bae TS; Lee HJ
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11225-33. PubMed ID: 24125116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Submonolayer-Pt-Coated Ultrathin Au Nanowires and Their Self-Organized Nanoporous Film: SERS and Catalysis Active Substrates for Operando SERS Monitoring of Catalytic Reactions.
    Liu R; Liu JF; Zhang ZM; Zhang LQ; Sun JF; Sun MT; Jiang GB
    J Phys Chem Lett; 2014 Mar; 5(6):969-75. PubMed ID: 26270975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction.
    Koenigsmann C; Semple DB; Sutter E; Tobierre SE; Wong SS
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5518-30. PubMed ID: 23742154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly stable silver-platinum core-shell nanowires for H
    Koylan S; Tunca S; Polat G; Durukan MB; Kim D; Kalay YE; Ko SH; Unalan HE
    Nanoscale; 2021 Aug; 13(30):13129-13141. PubMed ID: 34477796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal Properties and Segregation Behavior of Pt Nanowires Modified with Au, Ag, and Pd Atoms: A Classical Molecular Dynamics Study.
    Gambu TG; Terranova U; Santos-Carballal D; Petersen MA; Jones G; van Steen E; de Leeuw NH
    J Phys Chem C Nanomater Interfaces; 2019 Aug; 123(33):20522-20531. PubMed ID: 32064014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction.
    Li X; Liu J; He W; Huang Q; Yang H
    J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability.
    Wang X; Vara M; Luo M; Huang H; Ruditskiy A; Park J; Bao S; Liu J; Howe J; Chi M; Xie Z; Xia Y
    J Am Chem Soc; 2015 Dec; 137(47):15036-42. PubMed ID: 26566188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cobalt Sulfide Nanowires Core Encapsulated by a N, S Codoped Graphitic Carbon Shell for Efficient Oxygen Reduction Reaction.
    Han C; Li Q; Wang D; Lu Q; Xing Z; Yang X
    Small; 2018 Apr; 14(17):e1703642. PubMed ID: 29611279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction.
    Hsu C; Huang C; Hao Y; Liu F
    Phys Chem Chem Phys; 2012 Nov; 14(42):14696-701. PubMed ID: 23032948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles.
    Teng X; Yang H
    Nanotechnology; 2005 Jul; 16(7):S554-61. PubMed ID: 21727477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning nanoparticle structure and surface strain for catalysis optimization.
    Zhang S; Zhang X; Jiang G; Zhu H; Guo S; Su D; Lu G; Sun S
    J Am Chem Soc; 2014 May; 136(21):7734-9. PubMed ID: 24803093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.