BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23978514)

  • 41. Identification and quantification of adducts between oxidized rosmarinic acid and thiol compounds by UHPLC-LTQ-Orbitrap and MALDI-TOF/TOF tandem mass spectrometry.
    Tang CB; Zhang WG; Dai C; Li HX; Xu XL; Zhou GH
    J Agric Food Chem; 2015 Jan; 63(3):902-11. PubMed ID: 25541907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reverse micellar microextraction for rapid analysis of thiol-containing peptides and amino acids by atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Agrawal K; Wu HF; Shrivas K
    Rapid Commun Mass Spectrom; 2008 May; 22(9):1437-44. PubMed ID: 18395891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assay of protein tyrosine phosphatases by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
    Chen J; Qi Y; Zhao R; Zhou GW; Zhao ZJ
    Anal Biochem; 2001 May; 292(1):51-8. PubMed ID: 11319817
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of action of pyridazine analogues on protein tyrosine phosphatase 1B (PTP1B).
    Tjernberg A; Hallén D; Schultz J; James S; Benkestock K; Byström S; Weigelt J
    Bioorg Med Chem Lett; 2004 Feb; 14(4):891-5. PubMed ID: 15012988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aromatic thiol pKa effects on the folding rate of a disulfide containing protein.
    Gough JD; Gargano JM; Donofrio AE; Lees WJ
    Biochemistry; 2003 Oct; 42(40):11787-97. PubMed ID: 14529290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The CXXC motif: a rheostat in the active site.
    Chivers PT; Prehoda KE; Raines RT
    Biochemistry; 1997 Apr; 36(14):4061-6. PubMed ID: 9099998
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calpain-mediated degradation of reversibly oxidized protein-tyrosine phosphatase 1B.
    Trümpler A; Schlott B; Herrlich P; Greer PA; Böhmer FD
    FEBS J; 2009 Oct; 276(19):5622-33. PubMed ID: 19712109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression, purification, and characterization of human osteoclastic protein-tyrosine phosphatase catalytic domain in Escherichia coli.
    Jiang H; Sui Y; Cui Y; Lin P; Li W; Xing S; Wang D; Hu M; Fu X
    Protein Expr Purif; 2015 Mar; 107():7-12. PubMed ID: 25462809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of redox buffer properties on the folding of a disulfide-containing protein: dependence upon pH, thiol pKa, and thiol concentration.
    Gough JD; Lees WJ
    J Biotechnol; 2005 Feb; 115(3):279-90. PubMed ID: 15639090
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of the redox regulation of protein tyrosine phosphatase superfamily members utilizing a cysteinyl-labeling assay.
    Boivin B; Tonks NK
    Methods Enzymol; 2010; 474():35-50. PubMed ID: 20609903
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The redox regulation of LMW-PTP during cell proliferation or growth inhibition.
    Chiarugi P
    IUBMB Life; 2001 Jul; 52(1-2):55-9. PubMed ID: 11795594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bare silica nanoparticles as concentrating and affinity probes for rapid analysis of aminothiols, lysozyme and peptide mixtures using atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Agrawal K; Wu HF
    Rapid Commun Mass Spectrom; 2008; 22(3):283-90. PubMed ID: 18186457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An improved phenylarsine oxide-affinity method identifies triose phosphate isomerase as a candidate redox receptor protein.
    Foley TD; Stredny CM; Coppa TM; Gubbiotti MA
    Neurochem Res; 2010 Feb; 35(2):306-14. PubMed ID: 19731017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways.
    Le Moan N; Clement G; Le Maout S; Tacnet F; Toledano MB
    J Biol Chem; 2006 Apr; 281(15):10420-30. PubMed ID: 16418165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MALDI mass sequencing and biochemical characterization of Setaria cervi protein tyrosine phosphatase.
    Rai R; Singh N; Elesela S; Tiwari S; Rathaur S
    Parasitol Res; 2013 Jan; 112(1):147-54. PubMed ID: 23052758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An overview of the protein tyrosine phosphatase superfamily.
    Wang WQ; Sun JP; Zhang ZY
    Curr Top Med Chem; 2003; 3(7):739-48. PubMed ID: 12678841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reversible oxidation of PRL family protein-tyrosine phosphatases.
    Funato Y; Miki H
    Methods; 2014 Jan; 65(2):184-9. PubMed ID: 23831336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest.
    Dong M; Wu M; Wang F; Qin H; Han G; Dong J; Wu R; Ye M; Liu Z; Zou H
    Anal Chem; 2010 Apr; 82(7):2907-15. PubMed ID: 20199055
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2.
    Ishii T; Uchida K
    Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.