BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23978657)

  • 1. Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling.
    Cui H; Su Y; Li Q; Gao S; Shang JK
    Water Res; 2013 Oct; 47(16):6258-68. PubMed ID: 23978657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenate removal by nanostructured ZrO2 spheres.
    Hristovski KD; Westerhoff PK; Crittenden JC; Olson LW
    Environ Sci Technol; 2008 May; 42(10):3786-90. PubMed ID: 18546723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced arsenic removal from water by hierarchically porous CeO₂-ZrO₂ nanospheres: role of surface- and structure-dependent properties.
    Xu W; Wang J; Wang L; Sheng G; Liu J; Yu H; Huang XJ
    J Hazard Mater; 2013 Sep; 260():498-507. PubMed ID: 23811372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media.
    Hristovski K; Baumgardner A; Westerhoff P
    J Hazard Mater; 2007 Aug; 147(1-2):265-74. PubMed ID: 17254707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach for evaluating nanomaterials for use as packed bed adsorber media: a case study of arsenate removal by titanate nanofibers.
    Hristovski K; Westerhoff P; Crittenden J
    J Hazard Mater; 2008 Aug; 156(1-3):604-11. PubMed ID: 18242828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual and combined effects of water quality and empty bed contact time on As(V) removal by a fixed-bed iron oxide adsorber: implication for silicate precoating.
    Kanematsu M; Young TM; Fukushi K; Green PG; Darby JL
    Water Res; 2012 Oct; 46(16):5061-70. PubMed ID: 22841593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile template-free fabrication of hollow nestlike α-Fe₂O₃ nanostructures for water treatment.
    Wei Z; Xing R; Zhang X; Liu S; Yu H; Li P
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):598-604. PubMed ID: 23131138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles.
    Sandoval R; Cooper AM; Aymar K; Jain A; Hristovski K
    J Hazard Mater; 2011 Oct; 193():296-303. PubMed ID: 21871723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic removal by copper-impregnated natural mineral tufa part II: a kinetics and column adsorption study.
    Pantić K; Bajić ZJ; Veličković ZS; Nešić JZ; Đolić MB; Tomić NZ; Marinković AD
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):24143-24161. PubMed ID: 31228066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.
    Zhang G; Ren Z; Zhang X; Chen J
    Water Res; 2013 Aug; 47(12):4022-31. PubMed ID: 23571113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of arsenic from groundwater by granular titanium dioxide adsorbent.
    Bang S; Patel M; Lippincott L; Meng X
    Chemosphere; 2005 Jul; 60(3):389-97. PubMed ID: 15924958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66.
    Wang C; Liu X; Chen JP; Li K
    Sci Rep; 2015 Nov; 5():16613. PubMed ID: 26559001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH).
    Badruzzaman M; Westerhoff P; Knappe DR
    Water Res; 2004 Nov; 38(18):4002-12. PubMed ID: 15380990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight.
    He X; Deng F; Shen T; Yang L; Chen D; Luo J; Luo X; Min X; Wang F
    J Colloid Interface Sci; 2019 Mar; 539():223-234. PubMed ID: 30580178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced selective removal of arsenic(V) using a hybrid nanoscale zirconium molybdate embedded anion exchange resin.
    Bui TH; Hong SP; Yoon J
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37046-37053. PubMed ID: 31745776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands.
    Hsu JC; Lin CJ; Liao CH; Chen ST
    J Hazard Mater; 2008 May; 153(1-2):817-26. PubMed ID: 17988793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent.
    Ren Z; Zhang G; Chen JP
    J Colloid Interface Sci; 2011 Jun; 358(1):230-7. PubMed ID: 21440898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent.
    Zeng H; Arashiro M; Giammar DE
    Water Res; 2008 Nov; 42(18):4629-36. PubMed ID: 18786691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation.
    Tang W; Su Y; Li Q; Gao S; Shang JK
    Water Res; 2013 Jul; 47(11):3624-34. PubMed ID: 23726698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO2).
    Luo J; Luo X; Crittenden J; Qu J; Bai Y; Peng Y; Li J
    Environ Sci Technol; 2015 Sep; 49(18):11115-24. PubMed ID: 26301862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.