These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 23978932)

  • 1. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries.
    Wang Y; Yu X; Xu S; Bai J; Xiao R; Hu YS; Li H; Yang XQ; Chen L; Huang X
    Nat Commun; 2013; 4():2365. PubMed ID: 23978932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultrastable anode for long-life room-temperature sodium-ion batteries.
    Yu H; Ren Y; Xiao D; Guo S; Zhu Y; Qian Y; Gu L; Zhou H
    Angew Chem Int Ed Engl; 2014 Aug; 53(34):8963-9. PubMed ID: 24962822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Voltage and Ultralong-Life Sodium Full Cell for Stationary Energy Storage.
    Guo S; Liu P; Sun Y; Zhu K; Yi J; Chen M; Ishida M; Zhou H
    Angew Chem Int Ed Engl; 2015 Sep; 54(40):11701-5. PubMed ID: 26286923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the Dual-Electrode Characteristics of Layered Na
    Palanisamy M; Kim HW; Heo S; Lee E; Kim Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10618-10625. PubMed ID: 28277643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.
    Guo S; Yu H; Jian Z; Liu P; Zhu Y; Guo X; Chen M; Ishida M; Zhou H
    ChemSusChem; 2014 Aug; 7(8):2115-9. PubMed ID: 24919424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Strain Reticular Sodium Manganese Oxide as an Ultrastable Cathode for Sodium-Ion Batteries.
    Shi WJ; Zhang D; Meng XM; Bao CX; Xu SD; Chen L; Wang XM; Liu SB; Wu YC
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14174-14184. PubMed ID: 32109045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing the P2-O2 Phase Transition of Na0.67 Mn0.67 Ni0.33 O2 by Magnesium Substitution for Improved Sodium-Ion Batteries.
    Wang PF; You Y; Yin YX; Wang YS; Wan LJ; Gu L; Guo YG
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7445-9. PubMed ID: 27140875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Oxygen Activity in the High Energy P2-Type Na
    Ma C; Alvarado J; Xu J; Clément RJ; Kodur M; Tong W; Grey CP; Meng YS
    J Am Chem Soc; 2017 Apr; 139(13):4835-4845. PubMed ID: 28271898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination.
    Xie M; Luo R; Lu J; Chen R; Wu F; Wang X; Zhan C; Wu H; Albishri HM; Al-Bogami AS; El-Hady DA; Amine K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17176-83. PubMed ID: 25192293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries.
    Qi X; Liu L; Song N; Gao F; Yang K; Lu Y; Yang H; Hu YS; Cheng ZH; Chen L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40215-40223. PubMed ID: 29076718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries.
    Wang Y; Xiao R; Hu YS; Avdeev M; Chen L
    Nat Commun; 2015 Apr; 6():6954. PubMed ID: 25907679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between the Cation Disorders of Fe
    Lim SG; Kwon MS; Kim T; Kim H; Lee S; Lim J; Kim H; Lee KT
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct atomic-scale confirmation of three-phase storage mechanism in Li₄Ti₅O₁₂ anodes for room-temperature sodium-ion batteries.
    Sun Y; Zhao L; Pan H; Lu X; Gu L; Hu YS; Li H; Armand M; Ikuhara Y; Chen L; Huang X
    Nat Commun; 2013; 4():1870. PubMed ID: 23695664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Practical High-Energy Cathode for Sodium-Ion Batteries Based on Uniform P2-Na
    Fang Y; Yu XY; Lou XWD
    Angew Chem Int Ed Engl; 2017 May; 56(21):5801-5805. PubMed ID: 28436081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries.
    Guo S; Liu P; Yu H; Zhu Y; Chen M; Ishida M; Zhou H
    Angew Chem Int Ed Engl; 2015 May; 54(20):5894-9. PubMed ID: 25833039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Performance of Layered Oxide Cathode Materials with Football-Like Hierarchical Structure for Na-Ion Batteries by Incorporating Mg
    Li ZY; Wang H; Chen D; Sun K; Yang W; Yang J; Liu X; Han S
    ChemSusChem; 2018 Apr; 11(7):1223-1231. PubMed ID: 29400008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Route Toward Improved Sodium Ion Batteries: A Multifunctional Fluffy Na0.67FePO4/CNT Nanocactus.
    Huang W; Zhou J; Li B; An L; Cui P; Xia W; Song L; Xia D; Chu W; Wu Z
    Small; 2015 May; 11(18):2170-6. PubMed ID: 25641786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries.
    Lee HW; Wang RY; Pasta M; Woo Lee S; Liu N; Cui Y
    Nat Commun; 2014 Oct; 5():5280. PubMed ID: 25311066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na-rich layered Na
    Song S; Kotobuki M; Chen Y; Manzhos S; Xu C; Hu N; Lu L
    Sci Rep; 2017 Mar; 7(1):373. PubMed ID: 28336964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.