These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23978958)

  • 1. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.
    Safavieh R; Juncker D
    Lab Chip; 2013 Nov; 13(21):4180-9. PubMed ID: 23978958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of sequential fluid delivery in a fully autonomous capillary microfluidic device.
    Novo P; Volpetti F; Chu V; Conde JP
    Lab Chip; 2013 Feb; 13(4):641-5. PubMed ID: 23263650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary based patterning of cellular communities in laterally open channels.
    Lee SH; Heinz AJ; Shin S; Jung YG; Choi SE; Park W; Roe JH; Kwon S
    Anal Chem; 2010 Apr; 82(7):2900-6. PubMed ID: 20210331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.
    Rhee M; Burns MA
    Lab Chip; 2009 Nov; 9(21):3131-43. PubMed ID: 19823730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous microfluidic capillaric circuits replicated from 3D-printed molds.
    Olanrewaju AO; Robillard A; Dagher M; Juncker D
    Lab Chip; 2016 Sep; 16(19):3804-3814. PubMed ID: 27722504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New flow control systems in capillarics: off valves.
    Menges J; Meffan C; Dolamore F; Fee C; Dobson R; Nock V
    Lab Chip; 2021 Jan; 21(1):205-214. PubMed ID: 33295906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation integrated microfluidic circuits.
    Mosadegh B; Bersano-Begey T; Park JY; Burns MA; Takayama S
    Lab Chip; 2011 Sep; 11(17):2813-8. PubMed ID: 21799977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-autonomous liquid handling via on-chip pneumatic digital logic.
    Nguyen TV; Duncan PN; Ahrar S; Hui EE
    Lab Chip; 2012 Oct; 12(20):3991-4. PubMed ID: 22968472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates.
    Mohammadi S; Busa LS; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Anal Bioanal Chem; 2016 Nov; 408(27):7559-7563. PubMed ID: 27544520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous capillary system for one-step immunoassays.
    Zimmermann M; Hunziker P; Delamarche E
    Biomed Microdevices; 2009 Feb; 11(1):1-8. PubMed ID: 18810643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.
    Kokalj T; Park Y; Vencelj M; Jenko M; Lee LP
    Lab Chip; 2014 Nov; 14(22):4329-33. PubMed ID: 25231831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary soft valves for microfluidics.
    Hitzbleck M; Avrain L; Smekens V; Lovchik RD; Mertens P; Delamarche E
    Lab Chip; 2012 May; 12(11):1972-8. PubMed ID: 22526982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.
    Devaraju NS; Unger MA
    Lab Chip; 2012 Nov; 12(22):4809-15. PubMed ID: 23000861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic stickers.
    Bartolo D; Degré G; Nghe P; Studer V
    Lab Chip; 2008 Feb; 8(2):274-9. PubMed ID: 18231666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture.
    Lee KS; Boccazzi P; Sinskey AJ; Ram RJ
    Lab Chip; 2011 May; 11(10):1730-9. PubMed ID: 21445442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane).
    Weibel DB; Siegel AC; Lee A; George AH; Whitesides GM
    Lab Chip; 2007 Dec; 7(12):1832-6. PubMed ID: 18030408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling flow in microfluidic channels with a manually actuated pin valve.
    Brett ME; Zhao S; Stoia JL; Eddington DT
    Biomed Microdevices; 2011 Aug; 13(4):633-9. PubMed ID: 21472409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.