BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23979098)

  • 21. Disruption of supported lipid bilayers by semihydrophobic nanoparticles.
    Jing B; Zhu Y
    J Am Chem Soc; 2011 Jul; 133(28):10983-9. PubMed ID: 21631111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Core-Shell Approach for Systematically Coarsening Nanoparticle-Membrane Interactions: Application to Silver Nanoparticles.
    Singhal A; Sevink GJA
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size Limit and Energy Analysis of Nanoparticles during Wrapping Process by Membrane.
    Meng X; Li X
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30400180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cooperative wrapping of nanoparticles by membrane tubes.
    Raatz M; Lipowsky R; Weikl TR
    Soft Matter; 2014 May; 10(20):3570-7. PubMed ID: 24658648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular modeling of membrane responses to the adsorption of rotating nanoparticles: promoted cell uptake and mechanical membrane rupture.
    Yue T; Zhang X; Huang F
    Soft Matter; 2015 Jan; 11(3):456-65. PubMed ID: 25388826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular modeling of membrane tube pearling and the effect of nanoparticle adsorption.
    Yue T; Zhang X; Huang F
    Phys Chem Chem Phys; 2014 Jun; 16(22):10799-809. PubMed ID: 24760327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; MontaƱo GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics.
    Li Y; Yue T; Yang K; Zhang X
    Biomaterials; 2012 Jun; 33(19):4965-73. PubMed ID: 22483010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Al2O3 nanoparticles on bacterial membrane amphiphilic biomolecules.
    Jiang W; Ghosh S; Song L; Vachet RW; Xing B
    Colloids Surf B Biointerfaces; 2013 Feb; 102():292-9. PubMed ID: 23010119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential of Mean Force for DNA Wrapping Around a Cationic Nanoparticle.
    Bae S; Kim JS
    J Chem Theory Comput; 2021 Dec; 17(12):7952-7961. PubMed ID: 34792353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-chain compaction of long duplex DNA by cationic nanoparticles: modes of interaction and comparison with chromatin.
    Zinchenko AA; Sakaue T; Araki S; Yoshikawa K; Baigl D
    J Phys Chem B; 2007 Mar; 111(11):3019-31. PubMed ID: 17388415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How hydrophobic nanoparticles aggregate in the interior of membranes: A computer simulation.
    Tian F; Zhang X; Dong W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052701. PubMed ID: 25493810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrated approach to the study of the interaction between proteins and nanoparticles.
    Turci F; Ghibaudi E; Colonna M; Boscolo B; Fenoglio I; Fubini B
    Langmuir; 2010 Jun; 26(11):8336-46. PubMed ID: 20205402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulation study of spherical nanoparticles in a nematogenic matrix: anchoring, interactions, and phase behavior.
    Xu J; Bedrov D; Smith GD; Glaser MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011704. PubMed ID: 19257049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold nanoparticles stabilized by thioether dendrimers.
    Hermes JP; Sander F; Peterle T; Urbani R; Pfohl T; Thompson D; Mayor M
    Chemistry; 2011 Nov; 17(48):13473-81. PubMed ID: 22028306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field.
    Shimizu K; Nakamura H; Watano S
    Nanoscale; 2016 Jun; 8(23):11897-906. PubMed ID: 27241464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of gelucire content on stability, macrophage interaction and blood circulation of nanoparticles engineered from nanoemulsions.
    Wehrung D; Geldenhuys WJ; Oyewumi MO
    Colloids Surf B Biointerfaces; 2012 Jun; 94():259-65. PubMed ID: 22386863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning cellular uptake of nanoparticles via ligand density: Contribution of configurational entropy.
    Zhang Y; Li L; Wang J
    Phys Rev E; 2021 Nov; 104(5-1):054405. PubMed ID: 34942735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.