These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 23979254)

  • 21. Growth of single-crystalline cobalt silicide nanowires and their field emission property.
    Lu CM; Hsu HF; Lu KC
    Nanoscale Res Lett; 2013 Jul; 8(1):308. PubMed ID: 23819795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-crystal SnO(2) nanoshuttles: shape-controlled synthesis, perfect flexibility and high-performance field emission.
    Li J; Chen M; Tian S; Jin A; Xia X; Gu C
    Nanotechnology; 2011 Dec; 22(50):505601. PubMed ID: 22108293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cobalt silicide nanocables grown on Co films: synthesis and physical properties.
    Hsin CL; Yu SY; Wu WW
    Nanotechnology; 2010 Dec; 21(48):485602. PubMed ID: 21060142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dense and vertically-aligned centimetre-long ZnS nanowire arrays: ionic liquid assisted synthesis and their field emission properties.
    Chen S; Li L; Wang X; Tian W; Wang X; Tang DM; Bando Y; Golberg D
    Nanoscale; 2012 Apr; 4(8):2658-62. PubMed ID: 22294056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How Copper Nanowires Grow and How To Control Their Properties.
    Ye S; Stewart IE; Chen Z; Li B; Rathmell AR; Wiley BJ
    Acc Chem Res; 2016 Mar; 49(3):442-51. PubMed ID: 26872359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible three-dimensional SnO2 nanowire arrays: atomic layer deposition-assisted synthesis, excellent photodetectors, and field emitters.
    Deng K; Lu H; Shi Z; Liu Q; Li L
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7845-51. PubMed ID: 23879602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires.
    Hsu HF; Chen CA; Liu SW; Tang CK
    Nanoscale Res Lett; 2017 Dec; 12(1):182. PubMed ID: 28282978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters.
    Safdar M; Zhan X; Niu M; Mirza M; Zhao Q; Wang Z; Zhang J; Sun L; He J
    Nanotechnology; 2013 May; 24(18):185705. PubMed ID: 23579485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled synthesis of ultra-long AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire.
    Liu F; Su ZJ; Mo FY; Li L; Chen ZS; Liu QR; Chen J; Deng SZ; Xu NS
    Nanoscale; 2011 Feb; 3(2):610-8. PubMed ID: 21103529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel lift-off method for fabricating patterned and vertically-aligned W18O49 nanowire arrays with good field emission performance.
    Liu F; Mo FY; Jin SY; Li L; Chen ZS; Sun R; Chen J; Deng SZ; Xu NS
    Nanoscale; 2011 Apr; 3(4):1850-4. PubMed ID: 21384034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction.
    Hsu HF; Huang WR; Chen TH; Wu HY; Chen CA
    Nanoscale Res Lett; 2013 May; 8(1):224. PubMed ID: 23663726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solution-phase hierarchical self-organization of ultralong Se nanowires into diverse macroarchitectures and their enhanced field emission.
    Guo X; Fang L; Tan Y
    Phys Chem Chem Phys; 2015 Jan; 17(4):2794-803. PubMed ID: 25501713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process.
    Ghoshal T; Biswas S; Kar S; Dev A; Chakrabarti S; Chaudhuri S
    Nanotechnology; 2008 Feb; 19(6):065606. PubMed ID: 21730704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled Formation of Radial Core-Shell Si/Metal Silicide Crystalline Heterostructures.
    Kosloff A; Granot E; Barkay Z; Patolsky F
    Nano Lett; 2018 Jan; 18(1):70-80. PubMed ID: 29198117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects.
    Dong L; Bush J; Chirayos V; Solanki R; Jiao J; Ono Y; Conley JF; Ulrich BD
    Nano Lett; 2005 Oct; 5(10):2112-5. PubMed ID: 16218748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-crystalline chromium silicide nanowires and their physical properties.
    Hsu HF; Tsai PC; Lu KC
    Nanoscale Res Lett; 2015; 10():50. PubMed ID: 25852347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices.
    Hou JJ; Han N; Wang F; Xiu F; Yip S; Hui AT; Hung T; Ho JC
    ACS Nano; 2012 Apr; 6(4):3624-30. PubMed ID: 22443352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon-in-Al4C3 nanowire superstructures for field emitters.
    Sun Y; Cui H; Gong L; Chen J; She J; Ma Y; Shen P; Wang C
    ACS Nano; 2011 Feb; 5(2):932-41. PubMed ID: 21229959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large-area aligned growth of single-crystalline organic nanowire arrays for high-performance photodetectors.
    Wu Y; Zhang X; Pan H; Zhang X; Zhang Y; Zhang X; Jie J
    Nanotechnology; 2013 Sep; 24(35):355201. PubMed ID: 23917374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications.
    Wu YT; Huang CW; Chiu CH; Chang CF; Chen JY; Lin TY; Huang YT; Lu KC; Yeh PH; Wu WW
    Nano Lett; 2016 Feb; 16(2):1086-91. PubMed ID: 26789624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.