BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23979481)

  • 1. Human body parts tracking and kinematic features assessment based on RSSI and inertial sensor measurements.
    Blumrosen G; Luttwak A
    Sensors (Basel); 2013 Aug; 13(9):11289-313. PubMed ID: 23979481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wireless trigger for synchronization of wearable sensors to external systems during recording of human gait.
    Kugler P; Schlarb H; Blinn J; Picard A; Eskofier B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4537-40. PubMed ID: 23366937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniature wireless inertial sensor for measuring human motions.
    van Acht V; Bongers E; Lambert N; Verberne R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6279-82. PubMed ID: 18003456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A; Salarieh H; Alasty A
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements.
    Benevicius V; Ostasevicius V; Gaidys R
    Sensors (Basel); 2013 Aug; 13(9):11184-95. PubMed ID: 23974151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait analysis using floor markers and inertial sensors.
    Do TN; Suh YS
    Sensors (Basel); 2012; 12(2):1594-611. PubMed ID: 22438727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors.
    Bai L; Pepper MG; Yan Y; Spurgeon SK; Sakel M; Phillips M
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):232-43. PubMed ID: 25420266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive-gain complementary filter for real-time human motion tracking with MARG sensors in free-living environments.
    Tian Y; Wei H; Tan J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):254-64. PubMed ID: 22801527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capturing whole-body mobility of patients with Parkinson disease using inertial motion sensors: expected challenges and rewards.
    Rahimi F; Duval C; Jog M; Bee C; South A; Jog M; Edwards R; Boissy P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5833-8. PubMed ID: 22255666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.
    Zhou S; Fei F; Zhang G; Liu Y; Li WJ
    Sensors (Basel); 2014 Aug; 14(9):15641-57. PubMed ID: 25157546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wearable system for pre-impact fall detection.
    Nyan MN; Tay FE; Murugasu E
    J Biomech; 2008 Dec; 41(16):3475-81. PubMed ID: 18996529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor.
    Tolkiehn M; Atallah L; Lo B; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():369-72. PubMed ID: 22254325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational framework for the standardization of motion analysis exploiting wearable inertial sensors.
    Turcato A; Ramat S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4963-6. PubMed ID: 22255452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable systems with minimal set-up for monitoring and training of balance and mobility.
    Chiari L
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5828-32. PubMed ID: 22255665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Motion Tracking and Sensor Fusion Module for Medical Simulation.
    Shen Y; Wu F; Tseng KS; Ye D; Raymond J; Konety B; Sweet R
    Stud Health Technol Inform; 2016; 220():363-6. PubMed ID: 27046606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prototype wireless inertial-sensing device for measuring toe clearance.
    Lai DT; Charry E; Begg R; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4899-902. PubMed ID: 19163815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning Predictive Movement Models From Fabric-Mounted Wearable Sensors.
    Michael B; Howard M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1395-1404. PubMed ID: 26685255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.