These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 23979851)
1. Enhancing phytoextraction of Cd by combining poplar (clone "I-214") with Pseudomonas fluorescens and microbial consortia. Cocozza C; Vitullo D; Lima G; Maiuro L; Marchetti M; Tognetti R Environ Sci Pollut Res Int; 2014 Feb; 21(3):1796-1808. PubMed ID: 23979851 [TBL] [Abstract][Full Text] [Related]
2. Pseudomonas fluorescens accelerates a reverse and long-distance transport of cadmium and sucrose in the hyperaccumulator plant Sedum alfredii. Wu Y; Ma L; Liu Q; Topalović O; Wang Q; Yang X; Feng Y Chemosphere; 2020 Oct; 256():127156. PubMed ID: 32559889 [TBL] [Abstract][Full Text] [Related]
3. Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria. Chiboub M; Jebara SH; Saadani O; Fatnassi IC; Abdelkerim S; Jebara M J Plant Res; 2018 Jan; 131(1):99-110. PubMed ID: 28808815 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related]
5. Chemical- and microbial-enhanced phytoremediation of cadmium-contaminated calcareous soil by maize. Asilian E; Ghasemi-Fasaei R; Ronaghi A; Sepehri M; Niazi A Toxicol Ind Health; 2019 May; 35(5):378-386. PubMed ID: 31096888 [TBL] [Abstract][Full Text] [Related]
6. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. He X; Xu M; Wei Q; Tang M; Guan L; Lou L; Xu X; Hu Z; Chen Y; Shen Z; Xia Y Ecotoxicol Environ Saf; 2020 Dec; 205():111333. PubMed ID: 32979802 [TBL] [Abstract][Full Text] [Related]
7. Challenging synergistic activity of poplar-bacteria association for the Cd phytostabilization. C C; D T; G L; G A; D V; A F; T L; V de F; G L; G R; S S; R T Environ Sci Pollut Res Int; 2015 Dec; 22(24):19546-61. PubMed ID: 26268621 [TBL] [Abstract][Full Text] [Related]
8. The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L. Płociniczak T; Kukla M; Wątroba R; Piotrowska-Seget Z Chemosphere; 2013 May; 91(9):1332-7. PubMed ID: 23561856 [TBL] [Abstract][Full Text] [Related]
9. Enhanced cadmium phytoremediation capacity of poplar is associated with increased biomass and Cd accumulation under nitrogen deposition conditions. Yi L; Wu M; Yu F; Song Q; Zhao Z; Liao L; Tong J Ecotoxicol Environ Saf; 2022 Nov; 246():114154. PubMed ID: 36228354 [TBL] [Abstract][Full Text] [Related]
10. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium. Hu Y; Nan Z; Jin C; Wang N; Luo H Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230 [TBL] [Abstract][Full Text] [Related]
11. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. Hassan SE; Hijri M; St-Arnaud M N Biotechnol; 2013 Sep; 30(6):780-7. PubMed ID: 23876814 [TBL] [Abstract][Full Text] [Related]
12. Polyaspartate and liquid amino acid fertilizer are appropriate alternatives for promoting the phytoextraction of cadmium and lead in Solanum nigrum L. He X; Zhang J; Ren Y; Sun C; Deng X; Qian M; Hu Z; Li R; Chen Y; Shen Z; Xia Y Chemosphere; 2019 Dec; 237():124483. PubMed ID: 31404738 [TBL] [Abstract][Full Text] [Related]
13. Chromium phytoextraction from tannery effluent-contaminated soil by Crotalaria juncea infested with Pseudomonas fluorescens. Agarwal A; Singh HP; Rai JP Environ Sci Pollut Res Int; 2014; 21(13):7938-44. PubMed ID: 24659403 [TBL] [Abstract][Full Text] [Related]
14. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils. Tauqeer HM; Ur-Rahman M; Hussain S; Abbas F; Iqbal M Ecotoxicol Environ Saf; 2019 May; 173():273-284. PubMed ID: 30776560 [TBL] [Abstract][Full Text] [Related]
15. Cadmium phytoextraction through Brassica juncea L. under different consortia of plant growth-promoting bacteria from different ecological niches. Wang Q; Zhou Q; Huang L; Xu S; Fu Y; Hou D; Feng Y; Yang X Ecotoxicol Environ Saf; 2022 Jun; 237():113541. PubMed ID: 35483144 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Hechmi N; Aissa NB; Abdenaceur H; Jedidi N Environ Sci Pollut Res Int; 2014 Jan; 21(2):1304-13. PubMed ID: 23900950 [TBL] [Abstract][Full Text] [Related]
17. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.). Xu W; Lu G; Wang R; Guo C; Liao C; Yi X; Dang Z Int J Phytoremediation; 2015; 17(10):945-50. PubMed ID: 25581531 [TBL] [Abstract][Full Text] [Related]
19. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. Wang G; Wang L; Ma F; You Y; Wang Y; Yang D J Hazard Mater; 2020 May; 389():121873. PubMed ID: 31862351 [TBL] [Abstract][Full Text] [Related]
20. Dynamics and potential roles of abundant and rare subcommunities in the bioremediation of cadmium-contaminated paddy soil by Pseudomonas chenduensis. Li L; Lin Q; Li X; Li T; He X; Li D; Tao Y Appl Microbiol Biotechnol; 2019 Oct; 103(19):8203-8214. PubMed ID: 31396678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]