BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23979937)

  • 1. Genetic architecture of parallel pelvic reduction in ninespine sticklebacks.
    Shikano T; Laine VN; Herczeg G; Vilkki J; Merilä J
    G3 (Bethesda); 2013 Oct; 3(10):1833-42. PubMed ID: 23979937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genetic architecture of skeletal convergence and sex determination in ninespine sticklebacks.
    Shapiro MD; Summers BR; Balabhadra S; Aldenhoven JT; Miller AL; Cunningham CB; Bell MA; Kingsley DM
    Curr Biol; 2009 Jul; 19(13):1140-5. PubMed ID: 19500990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel genetic origins of pelvic reduction in vertebrates.
    Shapiro MD; Bell MA; Kingsley DM
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13753-8. PubMed ID: 16945911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback.
    Ishikawa A; Takeuchi N; Kusakabe M; Kume M; Mori S; Takahashi H; Kitano J
    J Evol Biol; 2013 Jul; 26(7):1417-30. PubMed ID: 23663028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genetic and molecular architecture of phenotypic diversity in sticklebacks.
    Peichel CL; Marques DA
    Philos Trans R Soc Lond B Biol Sci; 2017 Feb; 372(1713):. PubMed ID: 27994127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of major and minor QTL for ecologically important morphological traits in three-spined sticklebacks (Gasterosteus aculeatus).
    Liu J; Shikano T; Leinonen T; Cano JM; Li MH; Merilä J
    G3 (Bethesda); 2014 Apr; 4(4):595-604. PubMed ID: 24531726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus).
    Coyle SM; Huntingford FA; Peichel CL
    J Hered; 2007; 98(6):581-6. PubMed ID: 17693397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A.
    Howes TR; Summers BR; Kingsley DM
    BMC Biol; 2017 Dec; 15(1):115. PubMed ID: 29212540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer.
    Chan YF; Marks ME; Jones FC; Villarreal G; Shapiro MD; Brady SD; Southwick AM; Absher DM; Grimwood J; Schmutz J; Myers RM; Petrov D; Jónsson B; Schluter D; Bell MA; Kingsley DM
    Science; 2010 Jan; 327(5963):302-5. PubMed ID: 20007865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks.
    Shapiro MD; Marks ME; Peichel CL; Blackman BK; Nereng KS; Jónsson B; Schluter D; Kingsley DM
    Nature; 2004 Apr; 428(6984):717-23. PubMed ID: 15085123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extent of QTL Reuse During Repeated Phenotypic Divergence of Sympatric Threespine Stickleback.
    Conte GL; Arnegard ME; Best J; Chan YF; Jones FC; Kingsley DM; Schluter D; Peichel CL
    Genetics; 2015 Nov; 201(3):1189-200. PubMed ID: 26384359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic mapping of natural variation in schooling tendency in the threespine stickleback.
    Greenwood AK; Ardekani R; McCann SR; Dubin ME; Sullivan A; Bensussen S; Tavaré S; Peichel CL
    G3 (Bethesda); 2015 Feb; 5(5):761-9. PubMed ID: 25717151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Dissection of a Supergene Implicates
    Erickson PA; Baek J; Hart JC; Cleves PA; Miller CT
    Genetics; 2018 Jun; 209(2):591-605. PubMed ID: 29593029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Assembly Improvement and Mapping Convergently Evolved Skeletal Traits in Sticklebacks with Genotyping-by-Sequencing.
    Glazer AM; Killingbeck EE; Mitros T; Rokhsar DS; Miller CT
    G3 (Bethesda); 2015 Jun; 5(7):1463-72. PubMed ID: 26044731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two developmentally temporal quantitative trait loci underlie convergent evolution of increased branchial bone length in sticklebacks.
    Erickson PA; Glazer AM; Cleves PA; Smith AS; Miller CT
    Proc Biol Sci; 2014 Aug; 281(1788):20140822. PubMed ID: 24966315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic population structure constrains local adaptation in sticklebacks.
    Kemppainen P; Li Z; Rastas P; Löytynoja A; Fang B; Yang J; Guo B; Shikano T; Merilä J
    Mol Ecol; 2021 May; 30(9):1946-1961. PubMed ID: 33464655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait Loci.
    Miller CT; Glazer AM; Summers BR; Blackman BK; Norman AR; Shapiro MD; Cole BL; Peichel CL; Schluter D; Kingsley DM
    Genetics; 2014 May; 197(1):405-20. PubMed ID: 24652999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic architecture of skeletal evolution in European lake and stream stickleback.
    Berner D; Moser D; Roesti M; Buescher H; Salzburger W
    Evolution; 2014 Jun; 68(6):1792-805. PubMed ID: 24571250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partially repeatable genetic basis of benthic adaptation in threespine sticklebacks.
    Erickson PA; Glazer AM; Killingbeck EE; Agoglia RM; Baek J; Carsanaro SM; Lee AM; Cleves PA; Schluter D; Miller CT
    Evolution; 2016 Apr; 70(4):887-902. PubMed ID: 26947264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic architecture of parallel armor plate reduction in threespine sticklebacks.
    Colosimo PF; Peichel CL; Nereng K; Blackman BK; Shapiro MD; Schluter D; Kingsley DM
    PLoS Biol; 2004 May; 2(5):E109. PubMed ID: 15069472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.