BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23979970)

  • 1. Antiphase light and temperature cycles affect PHYTOCHROME B-controlled ethylene sensitivity and biosynthesis, limiting leaf movement and growth of Arabidopsis.
    Bours R; van Zanten M; Pierik R; Bouwmeester H; van der Krol A
    Plant Physiol; 2013 Oct; 163(2):882-95. PubMed ID: 23979970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity.
    Bours R; Kohlen W; Bouwmeester HJ; van der Krol A
    Plant Physiol; 2015 Feb; 167(2):517-30. PubMed ID: 25516603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene Treatment in Studying Leaf Senescence in Arabidopsis.
    Li Z; Guo H
    Methods Mol Biol; 2018; 1744():105-112. PubMed ID: 29392659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene response pathway is essential for ARABIDOPSIS A-FIFTEEN function in floral induction and leaf senescence.
    Chen GH; Chan YL; Liu CP; Wang LC
    Plant Signal Behav; 2012 Apr; 7(4):457-60. PubMed ID: 22499170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Ambient Temperature Accelerates Leaf Senescence via PHYTOCHROME-INTERACTING FACTOR 4 and 5 in
    Kim C; Kim SJ; Jeong J; Park E; Oh E; Park YI; Lim PO; Choi G
    Mol Cells; 2020 Jul; 43(7):645-661. PubMed ID: 32732458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and della proteins in Arabidopsis.
    Pierik R; Djakovic-Petrovic T; Keuskamp DH; de Wit M; Voesenek LA
    Plant Physiol; 2009 Apr; 149(4):1701-12. PubMed ID: 19211699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.
    Dornbusch T; Michaud O; Xenarios I; Fankhauser C
    Plant Cell; 2014 Oct; 26(10):3911-21. PubMed ID: 25281688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochrome B Conveys Low Ambient Temperature Cues to the Ethylene-Mediated Leaf Senescence in Arabidopsis.
    Lee JH; Park YJ; Kim JY; Park CM
    Plant Cell Physiol; 2022 Mar; 63(3):326-339. PubMed ID: 34950951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms.
    Khanna R; Shen Y; Marion CM; Tsuchisaka A; Theologis A; Schäfer E; Quail PH
    Plant Cell; 2007 Dec; 19(12):3915-29. PubMed ID: 18065691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling.
    Sellaro R; Pacín M; Casal JJ
    Mol Plant; 2012 May; 5(3):619-28. PubMed ID: 22311777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential petiole growth in Arabidopsis thaliana: photocontrol and hormonal regulation.
    Millenaar FF; Van Zanten M; Cox MCH; Pierik R; Voesenek LACJ; Peeters AJM
    New Phytol; 2009; 184(1):141-152. PubMed ID: 19558423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana.
    Yamashino T; Nomoto Y; Lorrain S; Miyachi M; Ito S; Nakamichi N; Fankhauser C; Mizuno T
    Plant Signal Behav; 2013 Mar; 8(3):e23390. PubMed ID: 23299336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis.
    Soy J; Leivar P; González-Schain N; Sentandreu M; Prat S; Quail PH; Monte E
    Plant J; 2012 Aug; 71(3):390-401. PubMed ID: 22409654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis.
    Brouwer B; Gardeström P; Keech O
    J Exp Bot; 2014 Jul; 65(14):4037-49. PubMed ID: 24604733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythms of ethylene emission in Arabidopsis.
    Thain SC; Vandenbussche F; Laarhoven LJ; Dowson-Day MJ; Wang ZY; Tobin EM; Harren FJ; Millar AJ; Van Der Straeten D
    Plant Physiol; 2004 Nov; 136(3):3751-61. PubMed ID: 15516515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement.
    Apelt F; Breuer D; Olas JJ; Annunziata MG; Flis A; Nikoloski Z; Kragler F; Stitt M
    Plant Physiol; 2017 Jul; 174(3):1949-1968. PubMed ID: 28559360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.
    Ueda H; Kusaba M
    Plant Physiol; 2015 Sep; 169(1):138-47. PubMed ID: 25979917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis.
    van Zanten M; Voesenek LA; Peeters AJ; Millenaar FF
    Plant Physiol; 2009 Nov; 151(3):1446-58. PubMed ID: 19741046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrograde Induction of phyB Orchestrates Ethylene-Auxin Hierarchy to Regulate Growth.
    Jiang J; Xiao Y; Chen H; Hu W; Zeng L; Ke H; Ditengou FA; Devisetty U; Palme K; Maloof J; Dehesh K
    Plant Physiol; 2020 Jul; 183(3):1268-1280. PubMed ID: 32430463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.