BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23980075)

  • 1. Dietary energy balance modulation of Kras- and Ink4a/Arf+/--driven pancreatic cancer: the role of insulin-like growth factor-I.
    Lashinger LM; Harrison LM; Rasmussen AJ; Logsdon CD; Fischer SM; McArthur MJ; Hursting SD
    Cancer Prev Res (Phila); 2013 Oct; 6(10):1046-55. PubMed ID: 23980075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype.
    Wang Z; Ali S; Banerjee S; Bao B; Li Y; Azmi AS; Korc M; Sarkar FH
    J Cell Physiol; 2013 Mar; 228(3):556-562. PubMed ID: 22806240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer.
    Lanza-Jacoby S; Yan G; Radice G; LePhong C; Baliff J; Hess R
    Exp Biol Med (Maywood); 2013 Jul; 238(7):787-97. PubMed ID: 23828595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling.
    Appleman VA; Ahronian LG; Cai J; Klimstra DS; Lewis BC
    Mol Cancer Res; 2012 Sep; 10(9):1228-39. PubMed ID: 22871572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
    Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C
    Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
    Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH
    Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated K-ras and INK4a/Arf deficiency cooperate during the development of pancreatic cancer by activation of Notch and NF-κB signaling pathways.
    Wang Z; Banerjee S; Ahmad A; Li Y; Azmi AS; Gunn JR; Kong D; Bao B; Ali S; Gao J; Mohammad RM; Miele L; Korc M; Sarkar FH
    PLoS One; 2011; 6(6):e20537. PubMed ID: 21673986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis.
    Cano CE; Hamidi T; Garcia MN; Grasso D; Loncle C; Garcia S; Calvo E; Lomberk G; Dusetti N; Bartholin L; Urrutia R; Iovanna JL
    Gut; 2014 Jun; 63(6):984-95. PubMed ID: 24026351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic reduction of insulin-like growth factor-1 mimics the anticancer effects of calorie restriction on cyclooxygenase-2-driven pancreatic neoplasia.
    Lashinger LM; Malone LM; McArthur MJ; Goldberg JA; Daniels EA; Pavone A; Colby JK; Smith NC; Perkins SN; Fischer SM; Hursting SD
    Cancer Prev Res (Phila); 2011 Jul; 4(7):1030-40. PubMed ID: 21593196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma.
    Ju HQ; Ying H; Tian T; Ling J; Fu J; Lu Y; Wu M; Yang L; Achreja A; Chen G; Zhuang Z; Wang H; Nagrath D; Yao J; Hung MC; DePinho RA; Huang P; Xu RH; Chiao PJ
    Nat Commun; 2017 Feb; 8():14437. PubMed ID: 28232723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16.
    Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C
    Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse Correlation of STAT3 and MEK Signaling Mediates Resistance to RAS Pathway Inhibition in Pancreatic Cancer.
    Nagathihalli NS; Castellanos JA; Lamichhane P; Messaggio F; Shi C; Dai X; Rai P; Chen X; VanSaun MN; Merchant NB
    Cancer Res; 2018 Nov; 78(21):6235-6246. PubMed ID: 30154150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma.
    Li JT; Yin M; Wang D; Wang J; Lei MZ; Zhang Y; Liu Y; Zhang L; Zou SW; Hu LP; Zhang ZG; Wang YP; Wen WY; Lu HJ; Chen ZJ; Su D; Lei QY
    Nat Cell Biol; 2020 Feb; 22(2):167-174. PubMed ID: 32029896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of p16 and activation of Kras in pancreas increase ductal adenocarcinoma formation and metastasis in vivo.
    Qiu W; Sahin F; Iacobuzio-Donahue CA; Garcia-Carracedo D; Wang WM; Kuo CY; Chen D; Arking DE; Lowy AM; Hruban RH; Remotti HE; Su GH
    Oncotarget; 2011 Nov; 2(11):862-73. PubMed ID: 22113502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma.
    Ling J; Kang Y; Zhao R; Xia Q; Lee DF; Chang Z; Li J; Peng B; Fleming JB; Wang H; Liu J; Lemischka IR; Hung MC; Chiao PJ
    Cancer Cell; 2012 Jan; 21(1):105-20. PubMed ID: 22264792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GNAS(R201H) and Kras(G12D) cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm.
    Taki K; Ohmuraya M; Tanji E; Komatsu H; Hashimoto D; Semba K; Araki K; Kawaguchi Y; Baba H; Furukawa T
    Oncogene; 2016 May; 35(18):2407-12. PubMed ID: 26257060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atorvastatin delays progression of pancreatic lesions to carcinoma by regulating PI3/AKT signaling in p48Cre/+ LSL-KrasG12D/+ mice.
    Mohammed A; Qian L; Janakiram NB; Lightfoot S; Steele VE; Rao CV
    Int J Cancer; 2012 Oct; 131(8):1951-62. PubMed ID: 22287227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice.
    Kopp JL; Dubois CL; Schaeffer DF; Samani A; Taghizadeh F; Cowan RW; Rhim AD; Stiles BL; Valasek M; Sander M
    Gastroenterology; 2018 Apr; 154(5):1509-1523.e5. PubMed ID: 29273451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10).
    Li H; Yang AL; Chung YT; Zhang W; Liao J; Yang GY
    Carcinogenesis; 2013 Sep; 34(9):2090-8. PubMed ID: 23689354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer.
    Zhang S; Chung WC; Xu K
    Oncogene; 2016 May; 35(19):2485-95. PubMed ID: 26279302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.