These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2398010)

  • 1. Design of a positionally sensitive laser-heated thermoluminescent detector system.
    Kearfott KJ; Grupen-Shemansky ME
    Health Phys; 1990 Oct; 59(4):421-31. PubMed ID: 2398010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positional radiotherapy beam dosimetry using a laser heated thermoluminescent plate.
    Kearfott KJ; Grupen-Shemansky ME
    Med Phys; 1990; 17(3):429-35. PubMed ID: 2385200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of real time temperature profiles in routine TLD read out--influences of detector thickness and heating rate on glow curve shape.
    Stadtmann H; Hranitzky C; Brasik N
    Radiat Prot Dosimetry; 2006; 119(1-4):310-3. PubMed ID: 16825249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LiF:Mg,Cu,P glow curve shape dependence on heating rate.
    Luo LZ; Velbeck KJ; Moscovitch M; Rotunda JE
    Radiat Prot Dosimetry; 2006; 119(1-4):184-90. PubMed ID: 16581930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thermoluminescence dose-response and other characteristics of the high-temperature TL in LiF:Mg,Ti (TLD-100).
    Horowitz YS; Oster L; Datz H
    Radiat Prot Dosimetry; 2007; 124(2):191-205. PubMed ID: 17616543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the glow curves of TLD exposed to thermal neutrons.
    Triolo A; Brai M; Marrale M; Gennaro G; Bartolotta A
    Radiat Prot Dosimetry; 2007; 126(1-4):333-6. PubMed ID: 17502321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimisation of the readout parameters when evaluating thermal neutron doses by TL dosimetry with LiF:Mg,Ti.
    German U; Weinstein M; Abraham A; Alfassi ZB
    Radiat Prot Dosimetry; 2007; 126(1-4):532-5. PubMed ID: 17513859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach to the analysis of thermoluminescence glow-curve of TLD-600 dosimeters following Am-241 alpha particles irradiation.
    Sadek AM; Hassan MM; Esmat E; Eissa HM
    Radiat Prot Dosimetry; 2018 Feb; 178(3):260-271. PubMed ID: 28981798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of absorbed dose to water around a clinical HDR (192)Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response.
    Carlsson Tedgren A; Elia R; Hedtjarn H; Olsson S; Alm Carlsson G
    Med Phys; 2012 Feb; 39(2):1133-40. PubMed ID: 22320824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-equivalent TL sheet dosimetry system for X- and gamma-ray dose mapping.
    Nariyama N; Konnai A; Ohnishi S; Odano N; Yamaji A; Ozasa N; Ishikawa Y
    Radiat Prot Dosimetry; 2006; 120(1-4):136-9. PubMed ID: 16614090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of heating rate and dose on trapping parameters of TLD-100 crystals.
    Caprile PF; Sánchez-Nieto B; Pino AM; Delgado JF
    Health Phys; 2013 Feb; 104(2):218-23. PubMed ID: 23274825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin-layer thermoluminescent dosemeters based on high-temperature self-adhesive tape.
    Harvey JR; Felstead SJ
    Phys Med Biol; 1979 Nov; 24(6):1250-7. PubMed ID: 531098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of TL materials to diagnostic radiology X radiation beams.
    Maia AF; Caldas LV
    Appl Radiat Isot; 2010; 68(4-5):780-3. PubMed ID: 20097569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of the optical density and the thermoluminescent response of LiF:Mg,Ti exposed to high doses of 60Co gamma rays.
    Montaño-García C; Gamboa-deBuen I
    Radiat Prot Dosimetry; 2006; 119(1-4):230-2. PubMed ID: 16644946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of enriched 6Li and 7Li Lif:Mg,Cu,P glass-rod thermoluminescent dosemeters for linear accelerator out-of-field radiation dose measurements.
    Takam R; Bezak E; Liu G; Marcu L
    Radiat Prot Dosimetry; 2012 Jun; 150(1):22-33. PubMed ID: 21873634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study on the susceptibility of LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (TLD-100H) to spurious signals in thermoluminescence dosimetry.
    Al-Haj A; Lagarde C; Mahyoub F
    Radiat Prot Dosimetry; 2007; 125(1-4):399-402. PubMed ID: 17223633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-RAY EMISSION FROM MATERIALS PROCESSING LASERS.
    Behrens R; Pullner B; Reginatto M
    Radiat Prot Dosimetry; 2019 May; 183(3):361-374. PubMed ID: 30215786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of heating element design on the performance of LiF: PTFE thermoluminescent Dosemeters.
    Yarza JC
    Phys Med Biol; 1978 Jan; 23(1):164-70. PubMed ID: 635012
    [No Abstract]   [Full Text] [Related]  

  • 20. Readout of thermoluminescence dosimetry chips using a contact planchet heater.
    Kron T; Butson M; Wong T; Metcalfe P
    Australas Phys Eng Sci Med; 1993 Sep; 16(3):137-42. PubMed ID: 8240142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.