BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23980108)

  • 21. [Genes involved in fimbrial biogenesis affect biofilm formation in Klebsiella pneumoniae].
    Suescún AV; Cubillos JR; Zambrano MM
    Biomedica; 2006 Dec; 26(4):528-37. PubMed ID: 17315479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae.
    Johnson JG; Murphy CN; Sippy J; Johnson TJ; Clegg S
    J Bacteriol; 2011 Jul; 193(14):3453-60. PubMed ID: 21571997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Serum inhibits P. aeruginosa biofilm formation on plastic surfaces and intravenous catheters.
    Hammond A; Dertien J; Colmer-Hamood JA; Griswold JA; Hamood AN
    J Surg Res; 2010 Apr; 159(2):735-46. PubMed ID: 19482317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Determinants of the Thickened Matrix in a Dual-Species Pseudomonas aeruginosa and Enterococcus faecalis Biofilm.
    Lee K; Lee KM; Kim D; Yoon SS
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo growth of Pseudomonas aeruginosa strains PAO1 and PA14 and the hypervirulent strain LESB58 in a rat model of chronic lung infection.
    Kukavica-Ibrulj I; Bragonzi A; Paroni M; Winstanley C; Sanschagrin F; O'Toole GA; Levesque RC
    J Bacteriol; 2008 Apr; 190(8):2804-13. PubMed ID: 18083816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm.
    Lee KW; Periasamy S; Mukherjee M; Xie C; Kjelleberg S; Rice SA
    ISME J; 2014 Apr; 8(4):894-907. PubMed ID: 24152718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the type 3 fimbrial adhesins of Klebsiella strains.
    Sebghati TA; Korhonen TK; Hornick DB; Clegg S
    Infect Immun; 1998 Jun; 66(6):2887-94. PubMed ID: 9596764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces.
    Di Martino P; Cafferini N; Joly B; Darfeuille-Michaud A
    Res Microbiol; 2003; 154(1):9-16. PubMed ID: 12576153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A short peptide with selective anti-biofilm activity against Pseudomonas aeruginosa and Klebsiella pneumoniae carbapenemase-producing bacteria.
    Cardoso MH; Santos VPM; Costa BO; Buccini DF; Rezende SB; Porto WF; Santos MJ; Silva ON; Ribeiro SM; Franco OL
    Microb Pathog; 2019 Oct; 135():103605. PubMed ID: 31228542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fur-dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43.
    Wu CC; Lin CT; Cheng WY; Huang CJ; Wang ZC; Peng HL
    Microbiology (Reading); 2012 Apr; 158(Pt 4):1045-1056. PubMed ID: 22262101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae.
    Hornick DB; Thommandru J; Smits W; Clegg S
    Infect Immun; 1995 May; 63(5):2026-32. PubMed ID: 7729917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae.
    Tan JW; Wilksch JJ; Hocking DM; Wang N; Srikhanta YN; Tauschek M; Lithgow T; Robins-Browne RM; Yang J; Strugnell RA
    J Bacteriol; 2015 May; 197(9):1659-67. PubMed ID: 25733612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of
    Chew SC; Yam JKH; Matysik A; Seng ZJ; Klebensberger J; Givskov M; Doyle P; Rice SA; Yang L; Kjelleberg S
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance.
    Periasamy S; Nair HA; Lee KW; Ong J; Goh JQ; Kjelleberg S; Rice SA
    Front Microbiol; 2015; 6():851. PubMed ID: 26347731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium.
    Haley CL; Colmer-Hamood JA; Hamood AN
    BMC Microbiol; 2012 Aug; 12():181. PubMed ID: 22900764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments.
    Ramsey MM; Whiteley M
    Mol Microbiol; 2004 Aug; 53(4):1075-87. PubMed ID: 15306012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gentian violet and ferric ammonium citrate disrupt Pseudomonas aeruginosa biofilms.
    Wang EW; Agostini G; Olomu O; Runco D; Jung JY; Chole RA
    Laryngoscope; 2008 Nov; 118(11):2050-6. PubMed ID: 18849857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin.
    Ołdak E; Trafny EA
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3281-8. PubMed ID: 16048937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellobiose-specific phosphotransferase system of Klebsiella pneumoniae and its importance in biofilm formation and virulence.
    Wu MC; Chen YC; Lin TL; Hsieh PF; Wang JT
    Infect Immun; 2012 Jul; 80(7):2464-72. PubMed ID: 22566508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa.
    Diggle SP; Stacey RE; Dodd C; Cámara M; Williams P; Winzer K
    Environ Microbiol; 2006 Jun; 8(6):1095-104. PubMed ID: 16689730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.