BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 2398053)

  • 1. Identification of a C-terminal protein carboxyl methyltransferase in rat liver membranes utilizing a synthetic farnesyl cysteine-containing peptide substrate.
    Stephenson RC; Clarke S
    J Biol Chem; 1990 Sep; 265(27):16248-54. PubMed ID: 2398053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an isoprenylated cysteine methyl ester hydrolase activity in bovine rod outer segment membranes.
    Tan EW; Rando RR
    Biochemistry; 1992 Jun; 31(24):5572-8. PubMed ID: 1610803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a membrane-bound protein carboxyl methyltransferase from rat kidney cortex.
    Boivin D; Gingras D; Béliveau R
    J Biol Chem; 1993 Feb; 268(4):2610-5. PubMed ID: 8428937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylation of microinjected isoaspartyl peptides in Xenopus oocytes. Competition with protein carboxyl methylation reactions.
    Romanik EA; O'Connor CM
    J Biol Chem; 1989 Aug; 264(24):14050-6. PubMed ID: 2760057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic methylation of 23-29-kDa bovine retinal rod outer segment membrane proteins. Evidence for methyl ester formation at carboxyl-terminal cysteinyl residues.
    Ota IM; Clarke S
    J Biol Chem; 1989 Aug; 264(22):12879-84. PubMed ID: 2753892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel methyltransferase activity modifying the carboxy terminal bis(geranylgeranyl)-Cys-Ala-Cys structure of small GTP-binding proteins.
    Giner JL; Rando RR
    Biochemistry; 1994 Dec; 33(50):15116-23. PubMed ID: 7999771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation of isoprenylated proteins in Saccharomyces cerevisiae. Multiple activities catalyze the cleavage of the three carboxyl-terminal amino acids from farnesylated substrates in vitro.
    Hrycyna CA; Clarke S
    J Biol Chem; 1992 May; 267(15):10457-64. PubMed ID: 1587828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single activity carboxyl methylates both farnesyl and geranylgeranyl cysteine residues.
    Volker C; Lane P; Kwee C; Johnson M; Stock J
    FEBS Lett; 1991 Dec; 295(1-3):189-94. PubMed ID: 1765152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase. Detection of a new site of methylation at isomerized L-aspartyl residues.
    Murray ED; Clarke S
    J Biol Chem; 1984 Sep; 259(17):10722-32. PubMed ID: 6469980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Farnesyl cysteine C-terminal methyltransferase activity is dependent upon the STE14 gene product in Saccharomyces cerevisiae.
    Hrycyna CA; Clarke S
    Mol Cell Biol; 1990 Oct; 10(10):5071-6. PubMed ID: 2204804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of synthetic peptides related to lactate dehydrogenase (231-242) by protein carboxyl methyltransferase and tyrosine protein kinase: effects of introducing an isopeptide bond between aspartic acid-235 and serine-236.
    Aswad DW; Johnson BA; Glass DB
    Biochemistry; 1987 Feb; 26(3):675-81. PubMed ID: 3105574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prenylated protein methyltransferases do not distinguish between farnesylated and geranylgeranylated substrates.
    Pérez-Sala D; Gilbert BA; Tan EW; Rando RR
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):835-40. PubMed ID: 1622400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates.
    O'Connor CM; Aswad DW; Clarke S
    Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7757-61. PubMed ID: 6595658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a rat liver protein carboxyl methyltransferase involved in the maturation of proteins with the -CXXX C-terminal sequence motif.
    Stephenson RC; Clarke S
    J Biol Chem; 1992 Jul; 267(19):13314-9. PubMed ID: 1320016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic methyl esterification of synthetic tripeptides: structural requirements of the peptide substrate. Detection of the reaction products by fast-atom-bombardment mass spectrometry.
    Galletti P; Ingrosso D; Manna C; Sica F; Capasso S; Pucci P; Marino G
    Eur J Biochem; 1988 Oct; 177(1):233-9. PubMed ID: 3181156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction.
    Xie H; Clarke S
    J Biol Chem; 1993 Jun; 268(18):13364-71. PubMed ID: 8514774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microsomal endoprotease that specifically cleaves isoprenylated peptides.
    Ma YT; Rando RR
    Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6275-9. PubMed ID: 1631119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of isopeptide bonds by protein carboxyl O-methyltransferase: seminal ribonuclease as a model system.
    Galletti P; Ciardiello A; Ingrosso D; Di Donato A; D'Alessio G
    Biochemistry; 1988 Mar; 27(5):1752-7. PubMed ID: 3365422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prenylated protein-specific endoprotease in rat liver microsomes that produces a carboxyl-terminal tripeptide.
    Jang GF; Yokoyama K; Gelb MH
    Biochemistry; 1993 Sep; 32(36):9500-7. PubMed ID: 8369315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by GTPgammaS of protein carboxylmethyltransferase activity in kidney brush border membranes.
    Desrosiers RR; Béliveau R
    Arch Biochem Biophys; 1998 Mar; 351(2):149-58. PubMed ID: 9514644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.