These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 23980561)
1. Differences between blood and a Newtonian fluid on the performance of a hydrodynamic bearing for rotary blood pumps. Amaral F; Egger C; Steinseifer U; Schmitz-Rode T Artif Organs; 2013 Sep; 37(9):786-92. PubMed ID: 23980561 [TBL] [Abstract][Full Text] [Related]
2. Experimental and analytical performance evaluation of short circular hydrodynamic journal bearings used in rotary blood pumps. Boehning F; Timms D; Hsu PL; Schmitz-Rode T; Steinseifer U Artif Organs; 2013 Oct; 37(10):913-20. PubMed ID: 23634963 [TBL] [Abstract][Full Text] [Related]
3. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump. Amaral F; Gross-Hardt S; Timms D; Egger C; Steinseifer U; Schmitz-Rode T Artif Organs; 2013 Oct; 37(10):866-74. PubMed ID: 23635098 [TBL] [Abstract][Full Text] [Related]
4. A passive magnetically and hydrodynamically suspended rotary blood pump. Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524 [TBL] [Abstract][Full Text] [Related]
5. Concept for a new hydrodynamic blood bearing for miniature blood pumps. Kink T; Reul H Artif Organs; 2004 Oct; 28(10):916-20. PubMed ID: 15384998 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Plasma Skimming within a Hydrodynamic Bearing Gap for Designing Spiral Groove Bearings in Rotary Blood Pumps. Jiang M; Sakota D; Kosaka R; Hijikata W Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1213-1217. PubMed ID: 34891505 [TBL] [Abstract][Full Text] [Related]
8. Impact of gap size and groove design of hydrodynamic bearing on plasma skimming effect for use in rotary blood pump. Jiang M; Sakota D; Kosaka R; Hijikata W J Artif Organs; 2022 Sep; 25(3):195-203. PubMed ID: 35088287 [TBL] [Abstract][Full Text] [Related]
9. Numerical and in vitro investigations of pressure rise in a new hydrodynamic blood bearing. Chan WK; Ooi KT; Loh YC Artif Organs; 2007 Jun; 31(6):434-40. PubMed ID: 17537055 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the Axial Gap Clearance in a Hydrodynamic-Passive Magnetically Levitated Rotary Blood Pump Using X-Ray Radiography. Thamsen B; Plamondon M; Granegger M; Schmid Daners M; Kaufmann R; Neels A; Meboldt M Artif Organs; 2018 May; 42(5):510-515. PubMed ID: 29341175 [TBL] [Abstract][Full Text] [Related]
11. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump. Han Q; Zou J; Ruan X; Fu X; Yang H Artif Organs; 2012 Aug; 36(8):739-46. PubMed ID: 22747897 [TBL] [Abstract][Full Text] [Related]
12. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation. Kosaka R; Maruyama O; Nishida M; Yada T; Saito S; Hirai S; Yamane T Artif Organs; 2009 Oct; 33(10):798-804. PubMed ID: 19681836 [TBL] [Abstract][Full Text] [Related]
13. Fluid dynamics aspects of miniaturized axial-flow blood pump. Kang C; Huang Q; Li Y Biomed Mater Eng; 2014; 24(1):723-9. PubMed ID: 24211957 [TBL] [Abstract][Full Text] [Related]
14. Improvement of hemocompatibility for hydrodynamic levitation centrifugal pump by optimizing step bearings. Kosaka R; Yada T; Nishida M; Maruyama O; Yamane T Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1331-4. PubMed ID: 22254562 [TBL] [Abstract][Full Text] [Related]
15. A simple method for the investigation of cell separation effects of blood with physiological hematocrit values. Gester K; Jansen SV; Stahl M; Steinseifer U Artif Organs; 2015 May; 39(5):432-40. PubMed ID: 25377596 [TBL] [Abstract][Full Text] [Related]
16. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics. Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994 [TBL] [Abstract][Full Text] [Related]
17. The Impact of Pulsatile Flow on Suspension Force for Hydrodynamically Levitated Blood Pump. Fu Y; Hu Y; Huang F; Zhou M J Healthc Eng; 2019; 2019():8065920. PubMed ID: 31281617 [TBL] [Abstract][Full Text] [Related]
18. Paradoxical effects of viscosity on the VentrAssist rotary blood pump. Vidakovic S; Ayre P; Woodard J; Lingard N; Tansley G; Reizes J Artif Organs; 2000 Jun; 24(6):478-82. PubMed ID: 10886069 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump. Boehning F; Timms DL; Amaral F; Oliveira L; Graefe R; Hsu PL; Schmitz-Rode T; Steinseifer U Artif Organs; 2011 Aug; 35(8):818-25. PubMed ID: 21843297 [TBL] [Abstract][Full Text] [Related]
20. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis. Kosaka R; Yada T; Nishida M; Maruyama O; Yamane T Artif Organs; 2013 Sep; 37(9):778-85. PubMed ID: 23834855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]