BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23980921)

  • 1. Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics simulation.
    Lindner B; Petridis L; Schulz R; Smith JC
    Biomacromolecules; 2013 Oct; 14(10):3390-8. PubMed ID: 23980921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion.
    Obama P; Ricochon G; Muniglia L; Brosse N
    Bioresour Technol; 2012 May; 112():156-63. PubMed ID: 22424922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.
    Zhang J; Wang Y; Zhang L; Zhang R; Liu G; Cheng G
    Bioresour Technol; 2014 Jan; 151():402-5. PubMed ID: 24269347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. REACH coarse-grained simulation of a cellulose fiber.
    Glass DC; Moritsugu K; Cheng X; Smith JC
    Biomacromolecules; 2012 Sep; 13(9):2634-44. PubMed ID: 22937726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liberation of cellulose from the lignin cage: A catalytic pretreatment method for the production of cellulosic ethanol.
    Hakola M; Kallioinen A; Kemell M; Lahtinen P; Lankinen E; Leskelä M; Repo T; Riekkola T; Siika-aho M; Uusitalo J; Vuorela S; von Weymarn N
    ChemSusChem; 2010 Oct; 3(10):1142-5. PubMed ID: 20853392
    [No Abstract]   [Full Text] [Related]  

  • 6. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents.
    Kim S; Han J
    Bioresour Technol; 2016 Mar; 204():1-8. PubMed ID: 26765845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction.
    Patri AS; Mostofian B; Pu Y; Ciaffone N; Soliman M; Smith MD; Kumar R; Cheng X; Wyman CE; Tetard L; Ragauskas AJ; Smith JC; Petridis L; Cai CM
    J Am Chem Soc; 2019 Aug; 141(32):12545-12557. PubMed ID: 31304747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray scattering studies of lignocellulosic biomass: a review.
    Xu F; Shi YC; Wang D
    Carbohydr Polym; 2013 May; 94(2):904-17. PubMed ID: 23544649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformations of Low-Molecular-Weight Lignin Polymers in Water.
    Petridis L; Smith JC
    ChemSusChem; 2016 Feb; 9(3):289-95. PubMed ID: 26763657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study on the mechanisms of cellulose dissolution and precipitation in the phosphoric acid-acetone process.
    Kang P; Qin W; Zheng ZM; Dong CQ; Yang YP
    Carbohydr Polym; 2012 Nov; 90(4):1771-8. PubMed ID: 22944446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of the dissolution process of a cellulose triacetate-II nano-sized crystal in DMSO.
    Hayakawa D; Ueda K; Yamane C; Miyamoto H; Horii F
    Carbohydr Res; 2011 Dec; 346(18):2940-7. PubMed ID: 22063502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis.
    Lee SH; Doherty TV; Linhardt RJ; Dordick JS
    Biotechnol Bioeng; 2009 Apr; 102(5):1368-76. PubMed ID: 19090482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry.
    Charlier L; Mazeau K
    J Phys Chem B; 2012 Apr; 116(14):4163-74. PubMed ID: 22429051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Features of promising technologies for pretreatment of lignocellulosic biomass.
    Mosier N; Wyman C; Dale B; Elander R; Lee YY; Holtzapple M; Ladisch M
    Bioresour Technol; 2005 Apr; 96(6):673-86. PubMed ID: 15588770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation analysis of the temperature dependence of lignin structure and dynamics.
    Petridis L; Schulz R; Smith JC
    J Am Chem Soc; 2011 Dec; 133(50):20277-87. PubMed ID: 22035184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings.
    Sathitsuksanoh N; Zhu Z; Ho TJ; Bai MD; Zhang YH
    Bioresour Technol; 2010 Jul; 101(13):4926-9. PubMed ID: 19854047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.
    Zhu JY; Pan XJ
    Bioresour Technol; 2010 Jul; 101(13):4992-5002. PubMed ID: 19969450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity.
    Tian D; Guo Y; Hu J; Yang G; Zhang J; Luo L; Xiao Y; Deng S; Deng O; Zhou W; Shen F
    Int J Biol Macromol; 2020 Jan; 142():288-297. PubMed ID: 31593728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydro-liquefaction of microcrystalline cellulose, xylan and industrial lignin in different supercritical solvents.
    Li Q; Liu D; Hou X; Wu P; Song L; Yan Z
    Bioresour Technol; 2016 Nov; 219():281-288. PubMed ID: 27497089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.
    Alvira P; Tomás-Pejó E; Ballesteros M; Negro MJ
    Bioresour Technol; 2010 Jul; 101(13):4851-61. PubMed ID: 20042329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.