BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 23981039)

  • 1. Oligodendrocyte-microglia cross-talk in the central nervous system.
    Peferoen L; Kipp M; van der Valk P; van Noort JM; Amor S
    Immunology; 2014 Mar; 141(3):302-13. PubMed ID: 23981039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lame ducks or fierce creatures? The role of oligodendrocytes in multiple sclerosis.
    Zeis T; Schaeren-Wiemers N
    J Mol Neurosci; 2008 May; 35(1):91-100. PubMed ID: 18278568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroinflammation in Demyelinating Diseases: Oxidative Stress as a Modulator of Glial Cross-Talk.
    Varas R; Ortiz FC
    Curr Pharm Des; 2019; 25(45):4755-4762. PubMed ID: 31840603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The benefits and detriments of macrophages/microglia in models of multiple sclerosis.
    Rawji KS; Yong VW
    Clin Dev Immunol; 2013; 2013():948976. PubMed ID: 23840244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNS-specific expression of C3a and C5a exacerbate demyelination severity in the cuprizone model.
    Ingersoll SA; Martin CB; Barnum SR; Martin BK
    Mol Immunol; 2010; 48(1-3):219-30. PubMed ID: 20813409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Tuberous Sclerosis Complex1 in Adult Oligodendrocyte Progenitor Cells Enhances Axon Remyelination and Increases Myelin Thickness after a Focal Demyelination.
    McLane LE; Bourne JN; Evangelou AV; Khandker L; Macklin WB; Wood TL
    J Neurosci; 2017 Aug; 37(31):7534-7546. PubMed ID: 28694334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system.
    Allan D; Fairlie-Clarke KJ; Elliott C; Schuh C; Barnett SC; Lassmann H; Linnington C; Jiang HR
    Acta Neuropathol Commun; 2016 Jul; 4(1):75. PubMed ID: 27455844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel role of glia maturation factor: induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines.
    Zaheer A; Zaheer S; Sahu SK; Knight S; Khosravi H; Mathur SN; Lim R
    J Neurochem; 2007 Apr; 101(2):364-76. PubMed ID: 17250654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connexin 43/47 channels are important for astrocyte/ oligodendrocyte cross-talk in myelination and demyelination.
    Basu R; Sarma JD
    J Biosci; 2018 Dec; 43(5):1055-1068. PubMed ID: 30541963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glial Cells: Role of the Immune Response in Ischemic Stroke.
    Xu S; Lu J; Shao A; Zhang JH; Zhang J
    Front Immunol; 2020; 11():294. PubMed ID: 32174916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune cell modulation of oligodendrocyte lineage cells.
    Harrington EP; Bergles DE; Calabresi PA
    Neurosci Lett; 2020 Jan; 715():134601. PubMed ID: 31693930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting TrkB with a Brain-Derived Neurotrophic Factor Mimetic Promotes Myelin Repair in the Brain.
    Fletcher JL; Wood RJ; Nguyen J; Norman EML; Jun CMK; Prawdiuk AR; Biemond M; Nguyen HTH; Northfield SE; Hughes RA; Gonsalvez DG; Xiao J; Murray SS
    J Neurosci; 2018 Aug; 38(32):7088-7099. PubMed ID: 29976621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are electrophysiological and oligodendrocyte alterations an element in the development of multiple sclerosis at the same time as or before the immune response?
    Ortiz GG; Mireles-Ramírez MA; Pacheco-Moisés FP; Ramírez-Jirano LJ; Bitzer-Quintero OK; Delgado-Lara DLC; Flores-Alvarado LJ; Mora-Navarro MA; Huerta M; Torres-Mendoza BMG
    Int J Neurosci; 2021 Dec; 131(12):1221-1230. PubMed ID: 32571126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway.
    Rosenberger K; Dembny P; Derkow K; Engel O; Krüger C; Wolf SA; Kettenmann H; Schott E; Meisel A; Lehnardt S
    Mol Neurodegener; 2015 Feb; 10():5. PubMed ID: 25887709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibroblast growth factor-2 inhibits myelin production by oligodendrocytes in vivo.
    Goddard DR; Berry M; Kirvell SL; Butt AM
    Mol Cell Neurosci; 2001 Nov; 18(5):557-69. PubMed ID: 11922145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenesis of myelin/oligodendrocyte damage in multiple sclerosis.
    Dhib-Jalbut S
    Neurology; 2007 May; 68(22 Suppl 3):S13-21; discussion S43-54. PubMed ID: 17548563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remyelinating strategies in multiple sclerosis.
    Luessi F; Kuhlmann T; Zipp F
    Expert Rev Neurother; 2014 Nov; 14(11):1315-34. PubMed ID: 25331418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysmyelination and reduced myelin basic protein gene expression by oligodendrocytes of SHP-1-deficient mice.
    Massa PT; Wu C; Fecenko-Tacka K
    J Neurosci Res; 2004 Jul; 77(1):15-25. PubMed ID: 15197735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The good, the bad and the ugly. Macrophages/microglia with a focus on myelin repair.
    Doring A; Yong VW
    Front Biosci (Schol Ed); 2011 Jun; 3(3):846-56. PubMed ID: 21622236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of autoimmunity in multiple sclerosis.
    Whitaker JN; Snyder DS
    CRC Crit Rev Clin Neurobiol; 1984; 1(1):45-82. PubMed ID: 6400508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.