These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23981288)

  • 21. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (II) Adsorption isotherms and biological activity of immobilized fibronectin.
    François P; Vaudaux P; Taborelli M; Tonetti M; Lew DP; Descouts P
    Clin Oral Implants Res; 1997 Jun; 8(3):217-25. PubMed ID: 9586466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of fluoride-modified titanium surfaces with the similar roughness on RUNX2 gene expression of osteoblast-like MG63 cells.
    Lee JH; Koak JY; Lim YJ; Kwon HB; Kong H; Kim MJ
    J Biomed Mater Res A; 2017 Nov; 105(11):3102-3109. PubMed ID: 28730623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of multiple sterilization on surface characteristics and in vitro biologic responses to titanium.
    Vezeau PJ; Koorbusch GF; Draughn RA; Keller JC
    J Oral Maxillofac Surg; 1996 Jun; 54(6):738-46. PubMed ID: 8648479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma.
    Jeong WS; Kwon JS; Lee JH; Uhm SH; Ha Choi E; Kim KM
    Biomed Mater; 2017 Jul; 12(4):045015. PubMed ID: 28746053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of 3D microgroove surface topography on plasma and cellular fibronectin of human gingival fibroblasts.
    Lai Y; Chen J; Zhang T; Gu D; Zhang C; Li Z; Lin S; Fu X; Schultze-Mosgau S
    J Dent; 2013 Nov; 41(11):1109-21. PubMed ID: 23948393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells.
    Lüthen F; Lange R; Becker P; Rychly J; Beck U; Nebe JG
    Biomaterials; 2005 May; 26(15):2423-40. PubMed ID: 15585246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic Approach to Stimulate Osteogenesis on Titanium Implant Surfaces Using Fibronectin Derived Oligopeptide.
    Cho YD; Kim SJ; Bae HS; Yoon WJ; Kim KH; Ryoo HM; Seol YJ; Lee YM; Rhyu IC; Ku Y
    Curr Pharm Des; 2016; 22(30):4729-4735. PubMed ID: 26845124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wettability studies of topologically distinct titanium surfaces.
    Kulkarni M; Patil-Sen Y; Junkar I; Kulkarni CV; Lorenzetti M; Iglič A
    Colloids Surf B Biointerfaces; 2015 May; 129():47-53. PubMed ID: 25819365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Live endothelial cells on plasma-nitrided and oxidized titanium: An approach for evaluating biocompatibility.
    Braz JKFS; Martins GM; Morales N; Naulin P; Fuentes C; Barrera NP; O Vitoriano J; Rocha HAO; Oliveira MF; Alves C; Moura CEB
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111014. PubMed ID: 32487415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ultraviolet-mediated photofunctionalization for bone formation around medical titanium mesh.
    Hirota M; Ikeda T; Tabuchi M; Iwai T; Tohnai I; Ogawa T
    J Oral Maxillofac Surg; 2014 Sep; 72(9):1691-702. PubMed ID: 25109583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The influence of ultraviolet irradiation on sandblasted and acid-etching surface adsorbing human fibronectin].
    Li S; Zhang X; Ni J; Wei C; Rong M; Zhou L
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2014 Apr; 49(4):234-8. PubMed ID: 24969599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interface interactions of osteoblasts with structured titanium and the correlation between physicochemical characteristics and cell biological parameters.
    Nebe JG; Luethen F; Lange R; Beck U
    Macromol Biosci; 2007 May; 7(5):567-78. PubMed ID: 17457937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical surface modifications to titanium implants using the tresyl chlorideactivated method.
    Hayakawa T
    Dent Mater J; 2015; 34(6):725-39. PubMed ID: 26632221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal treatment to increase titanium wettability induces selective proteins adsorption from blood serum thus affecting osteoblasts adhesion.
    Toffoli A; Parisi L; Bianchi MG; Lumetti S; Bussolati O; Macaluso GM
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110250. PubMed ID: 31761226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of sterilization on the mineralization of titanium implants induced by incubation in various biological model fluids.
    Serro AP; Saramago B
    Biomaterials; 2003 Nov; 24(26):4749-60. PubMed ID: 14530072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fibronectin modified TiO
    Jin Z; Yan X; Liu G; Lai M
    J Biomater Appl; 2018 Jul; 33(1):44-51. PubMed ID: 29726733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The change of surface charge by lithium ion coating enhances protein adsorption on titanium.
    Isoshima K; Ueno T; Arai Y; Saito H; Chen P; Tsutsumi Y; Hanawa T; Wakabayashi N
    J Mech Behav Biomed Mater; 2019 Dec; 100():103393. PubMed ID: 31450101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity.
    Hori N; Ueno T; Suzuki T; Yamada M; Att W; Okada S; Ohno A; Aita H; Kimoto K; Ogawa T
    Int J Oral Maxillofac Implants; 2010; 25(1):49-62. PubMed ID: 20209187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficacy of glow discharge gas plasma treatment as a surface modification process for three-dimensional poly (D,L-lactide) scaffolds.
    Chim H; Ong JL; Schantz JT; Hutmacher DW; Agrawal CM
    J Biomed Mater Res A; 2003 Jun; 65(3):327-35. PubMed ID: 12746879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.