BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23981315)

  • 1. A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical.
    Li L; Zhang L; Li K; Wang Y; Gao C; Han B; Ma C; Xu P
    Biotechnol Biofuels; 2013 Aug; 6(1):123. PubMed ID: 23981315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol.
    Qiu Y; Zhang J; Li L; Wen Z; Nomura CT; Wu S; Chen S
    Biotechnol Biofuels; 2016; 9():117. PubMed ID: 27257436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30.
    Zhang L; Xu Q; Peng X; Xu B; Wu Y; Yang Y; Sun S; Hu K; Shen Y
    J Ind Microbiol Biotechnol; 2014 Sep; 41(9):1319-27. PubMed ID: 24981852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of (2R, 3R)-2,3-butanediol using engineered
    Yang Z; Zhang Z
    Biotechnol Biofuels; 2018; 11():35. PubMed ID: 29449883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars.
    Li L; Li K; Wang Y; Chen C; Xu Y; Zhang L; Han B; Gao C; Tao F; Ma C; Xu P
    Metab Eng; 2015 Mar; 28():19-27. PubMed ID: 25499652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of
    Lv X; Dai L; Bai F; Wang Z; Zhang L; Shen Y
    Bioresour Bioprocess; 2016; 3(1):52. PubMed ID: 27942437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241.
    Zhang L; Guo Z; Chen J; Xu Q; Lin H; Hu K; Guan X; Shen Y
    Sci Rep; 2016 Jan; 6():19257. PubMed ID: 26753612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
    Zhang L; Xu Q; Zhan S; Li Y; Lin H; Sun S; Sha L; Hu K; Guan X; Shen Y
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1175-84. PubMed ID: 23666479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Engineering of
    Lü C; Ge Y; Cao M; Guo X; Liu P; Gao C; Xu P; Ma C
    Front Bioeng Biotechnol; 2020; 8():125. PubMed ID: 32154242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis.
    Qi G; Kang Y; Li L; Xiao A; Zhang S; Wen Z; Xu D; Chen S
    Biotechnol Biofuels; 2014 Jan; 7(1):16. PubMed ID: 24475980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase.
    Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST
    PLoS One; 2013; 8(10):e76149. PubMed ID: 24098433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1419-25. PubMed ID: 26275527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol.
    Xu Y; Chu H; Gao C; Tao F; Zhou Z; Li K; Li L; Ma C; Xu P
    Metab Eng; 2014 May; 23():22-33. PubMed ID: 24525331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production.
    Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y
    J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process optimization for mass production of 2,3-butanediol by Bacillus subtilis CS13.
    Wang D; Oh BR; Lee S; Kim DH; Joe MH
    Biotechnol Biofuels; 2021 Jan; 14(1):15. PubMed ID: 33419471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient (3R)-Acetoin Production from
    Guo Z; Zhao X; He Y; Yang T; Gao H; Li G; Chen F; Sun M; Lee JK; Zhang L
    J Microbiol Biotechnol; 2017 Jan; 27(1):92-100. PubMed ID: 27713210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol.
    Kou M; Cui Z; Fu J; Dai W; Wang Z; Chen T
    Microb Cell Fact; 2022 Jul; 21(1):150. PubMed ID: 35879766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a newly isolated Bacillus licheniformis strain for the production of (2R,3R)-butanediol.
    Song CW; Chelladurai R; Park JM; Song H
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):97-108. PubMed ID: 31758412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca.
    Lee YG; Bae JM; Kim SJ
    J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 mediated engineering of Bacillus licheniformis for industrial production of (2R,3S)-butanediol.
    Song CW; Rathnasingh C; Park JM; Kwon M; Song H
    Biotechnol Prog; 2021 Jan; 37(1):e3072. PubMed ID: 32964665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.