These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 2398138)

  • 21. Biochemical studies of trophic dependences in crayfish giant axons.
    Meyer MR; Bittner GD
    Brain Res; 1978 Mar; 143(2):213-32. PubMed ID: 75753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organelle flux in intact and transected crayfish giant axons.
    Viancour TA
    Brain Res; 1990 Dec; 535(2):245-54. PubMed ID: 1705857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Axon cap morphology of the sea robin (Prionotus carolinus): Mauthner cell is correlated with the presence of "signature" field potentials and a C-type startle response.
    Zottoli SJ; Wong TW; Agostini MA; Meyers JR
    J Comp Neurol; 2011 Jul; 519(10):1979-98. PubMed ID: 21452211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered excitability of goldfish mauthner cell following axotomy. I. Characterization and correlations with somatic and axonal morphological reactions.
    Titmus MJ; Faber DS; Zottoli SJ
    J Neurophysiol; 1986 Jun; 55(6):1424-39. PubMed ID: 3734864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors.
    Schmidt JT; Turcotte JC; Buzzard M; Tieman DG
    J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical responses and synaptic connections of giant serotonin-immunoreactive neurons in crayfish olfactory and accessory lobes.
    Sandeman DC; Sandeman RE
    J Comp Neurol; 1994 Mar; 341(1):130-44. PubMed ID: 8006219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity sharpens the regenerating retinotectal projection in goldfish: sensitive period for strobe illumination and lack of effect on synaptogenesis and on ganglion cell receptive field properties.
    Eisele LE; Schmidt JT
    J Neurobiol; 1988 Jul; 19(5):395-411. PubMed ID: 2839617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium-activated proteolysis of neurofilament proteins in goldfish Mauthner axons.
    Raabe TD; Nguyen T; Bittner GD
    J Neurobiol; 1995 Feb; 26(2):253-61. PubMed ID: 7707045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclosporin A retards the wallerian degeneration of peripheral mammalian axons.
    Sunio A; Bittner GD
    Exp Neurol; 1997 Jul; 146(1):46-56. PubMed ID: 9225737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position.
    Seitz R; Vilpoux K; Hopp U; Harzsch S; Maier G
    J Exp Zool A Comp Exp Biol; 2005 May; 303(5):393-405. PubMed ID: 15828010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regeneration from crayfish phasic and tonic motor axons in vitro.
    Egid K; Lnenicka GA
    J Neurobiol; 1993 Aug; 24(8):1111-20. PubMed ID: 8409971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light microscopic study of degenerating cobalt-filled optic axons in goldfish: role of microglia and radial glia in debris removal.
    Springer AD; Wilson BR
    J Comp Neurol; 1989 Apr; 282(1):119-32. PubMed ID: 2708589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vitamin A increases cold tolerance in goldfish.
    Chen TS; Buccini FJ; Chen D
    Int J Vitam Nutr Res; 1985; 55(4):365-9. PubMed ID: 4086203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects of depolarization on the growth of crayfish tonic and phasic motor axons in culture.
    Arcaro KF; Lnenicka GA
    J Neurobiol; 1997 Jul; 33(1):85-97. PubMed ID: 9212072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade.
    Hartlieb E; Stuermer CA
    J Comp Neurol; 1989 Jun; 284(1):148-68. PubMed ID: 2754029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glial repair at the lesion site in regenerating goldfish spinal cord: an immunohistochemical study using species-specific antibodies.
    Nona SN; Stafford CA
    J Neurosci Res; 1995 Oct; 42(3):350-6. PubMed ID: 8583503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina.
    Matsumoto DE; Scalia F
    J Comp Neurol; 1981 Oct; 202(1):135-55. PubMed ID: 6974743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron.
    Lnenicka GA; Atwood HL
    J Neurobiol; 1985 Mar; 16(2):97-110. PubMed ID: 2985749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for the stability of positional markers in the goldfish tectum.
    Busse U; Stuermer CA
    J Comp Neurol; 1989 Oct; 288(4):538-54. PubMed ID: 2808749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laminar histochemical and cytochemical localization of cytochrome oxidase in the goldfish retina and optic tectum in response to deafferentation and during regeneration.
    Kageyama GH; Meyer RL
    J Comp Neurol; 1988 Dec; 278(4):521-42. PubMed ID: 2852682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.