These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23981543)

  • 1. Neural network based diagonal decoupling control of powered wheelchair systems.
    Nguyen TN; Su S; Nguyen HT
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):371-8. PubMed ID: 23981543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust neuro-sliding mode multivariable control strategy for powered wheelchairs.
    Nguyen TN; Su SW; Nguyen HT
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):105-11. PubMed ID: 20805057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced robust tracking control of a powered wheelchair system.
    Nguyen NT; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4767-70. PubMed ID: 18003071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural network decoupling technique and its application to a powered wheelchair system.
    Tuan Nghia Nguyen ; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4586-9. PubMed ID: 26737315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuro-sliding mode multivariable control of a powered wheelchair.
    Nguyen N; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3471-4. PubMed ID: 19163456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal path-following control of a smart powered wheelchair.
    Nguyen N; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5025-8. PubMed ID: 19163845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust multivariable strategy and its application to a powered wheelchair.
    Nguyen N; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7114-7. PubMed ID: 19963948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Middlesex University rehabilitation robot.
    Parsons B; White A; Prior S; Warner P
    J Med Eng Technol; 2005; 29(4):151-62. PubMed ID: 16012066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Product development: using a 3D computer model to optimize the stability of the Rocket powered wheelchair.
    Pinkney S; Fernie G
    Assist Technol; 2001; 13(1):46-58. PubMed ID: 12212436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic adaptation in the NavChair Assistive Wheelchair Navigation System.
    Simpson RC; Levine SP
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):452-63. PubMed ID: 10609633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward gesture controlled wheelchair: a proof of concept study.
    Kawarazaki N; Stefanov D; Diaz AI
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650348. PubMed ID: 24187167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Self-Reliance Factors to Decide How to Share Control Between Human Powered Wheelchair Drivers and Ultrasonic Sensors.
    Sanders DA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1221-1229. PubMed ID: 28113771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hephaestus Smart Wheelchair System.
    Simpson RC; Poirot D; Baxter F
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):118-22. PubMed ID: 12236449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system.
    Mihailidis A; Elinas P; Boger J; Hoey J
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):136-43. PubMed ID: 17436886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time model based electrical powered wheelchair control.
    Wang H; Salatin B; Grindle GG; Ding D; Cooper RA
    Med Eng Phys; 2009 Dec; 31(10):1244-54. PubMed ID: 19733494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a software-based stability assessment system for wheelchairs and their occupants.
    Caldicott SJ; Shapcott N
    J Med Eng Technol; 2008; 32(6):440-7. PubMed ID: 18608789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.