BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23981724)

  • 1. Immunosuppressants affect human neural stem cells in vitro but not in an in vivo model of spinal cord injury.
    Sontag CJ; Nguyen HX; Kamei N; Uchida N; Anderson AJ; Cummings BJ
    Stem Cells Transl Med; 2013 Oct; 2(10):731-44. PubMed ID: 23981724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model.
    Salazar DL; Uchida N; Hamers FP; Cummings BJ; Anderson AJ
    PLoS One; 2010 Aug; 5(8):e12272. PubMed ID: 20806064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery.
    Hooshmand MJ; Sontag CJ; Uchida N; Tamaki S; Anderson AJ; Cummings BJ
    PLoS One; 2009 Jun; 4(6):e5871. PubMed ID: 19517014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice.
    Cummings BJ; Uchida N; Tamaki SJ; Salazar DL; Hooshmand M; Summers R; Gage FH; Anderson AJ
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):14069-74. PubMed ID: 16172374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injury to the spinal cord niche alters the engraftment dynamics of human neural stem cells.
    Sontag CJ; Uchida N; Cummings BJ; Anderson AJ
    Stem Cell Reports; 2014 May; 2(5):620-32. PubMed ID: 24936450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury.
    Piltti KM; Avakian SN; Funes GM; Hu A; Uchida N; Anderson AJ; Cummings BJ
    Stem Cell Res; 2015 Sep; 15(2):341-53. PubMed ID: 26298025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safety of epicenter versus intact parenchyma as a transplantation site for human neural stem cells for spinal cord injury therapy.
    Piltti KM; Salazar DL; Uchida N; Cummings BJ; Anderson AJ
    Stem Cells Transl Med; 2013 Mar; 2(3):204-16. PubMed ID: 23413374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function.
    Cummings BJ; Uchida N; Tamaki SJ; Anderson AJ
    Neurol Res; 2006 Jul; 28(5):474-81. PubMed ID: 16808875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic Neutrophil Depletion Modulates the Migration and Fate of Transplanted Human Neural Stem Cells to Rescue Functional Repair.
    Nguyen HX; Hooshmand MJ; Saiwai H; Maddox J; Salehi A; Lakatos A; Nishi RA; Salazar D; Uchida N; Anderson AJ
    J Neurosci; 2017 Sep; 37(38):9269-9287. PubMed ID: 28847814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety of human neural stem cell transplantation in chronic spinal cord injury.
    Piltti KM; Salazar DL; Uchida N; Cummings BJ; Anderson AJ
    Stem Cells Transl Med; 2013 Dec; 2(12):961-74. PubMed ID: 24191264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury.
    Kojima K; Miyoshi H; Nagoshi N; Kohyama J; Itakura G; Kawabata S; Ozaki M; Iida T; Sugai K; Ito S; Fukuzawa R; Yasutake K; Renault-Mihara F; Shibata S; Matsumoto M; Nakamura M; Okano H
    Stem Cells Transl Med; 2019 Mar; 8(3):260-270. PubMed ID: 30485733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice With Contusion Spinal Cord Injury.
    Pomeshchik Y; Puttonen KA; Kidin I; Ruponen M; Lehtonen S; Malm T; Åkesson E; Hovatta O; Koistinaho J
    Cell Transplant; 2015; 24(9):1799-812. PubMed ID: 25203632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing.
    Nagoshi N; Khazaei M; Ahlfors JE; Ahuja CS; Nori S; Wang J; Shibata S; Fehlings MG
    Stem Cells Transl Med; 2018 Nov; 7(11):806-818. PubMed ID: 30085415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prior Treatment with Anti-High Mobility Group Box-1 Antibody Boosts Human Neural Stem Cell Transplantation-Mediated Functional Recovery After Spinal Cord Injury.
    Uezono N; Zhu Y; Fujimoto Y; Yasui T; Matsuda T; Nakajo M; Abematsu M; Setoguchi T; Mori S; Takahashi HK; Komiya S; Nishibori M; Nakashima K
    Stem Cells; 2018 May; 36(5):737-750. PubMed ID: 29517828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunosuppressive agents modulate function, growth, and survival of cardiomyocytes and endothelial cells derived from human embryonic stem cells.
    Földes G; Mioulane M; Kodagoda T; Lendvai Z; Iqbal A; Ali NN; Schneider MD; Harding SE
    Stem Cells Dev; 2014 Mar; 23(5):467-76. PubMed ID: 24192059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord.
    Yasuda A; Tsuji O; Shibata S; Nori S; Takano M; Kobayashi Y; Takahashi Y; Fujiyoshi K; Hara CM; Miyawaki A; Okano HJ; Toyama Y; Nakamura M; Okano H
    Stem Cells; 2011 Dec; 29(12):1983-94. PubMed ID: 22028197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LOTUS overexpression via ex vivo gene transduction further promotes recovery of motor function following human iPSC-NS/PC transplantation for contusive spinal cord injury.
    Ito S; Nagoshi N; Kamata Y; Kojima K; Nori S; Matsumoto M; Takei K; Nakamura M; Okano H
    Stem Cell Reports; 2021 Nov; 16(11):2703-2717. PubMed ID: 34653401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing Human Neural Stem Cell Transplantation Dose Alters Oligodendroglial and Neuronal Differentiation after Spinal Cord Injury.
    Piltti KM; Funes GM; Avakian SN; Salibian AA; Huang KI; Carta K; Kamei N; Flanagan LA; Monuki ES; Uchida N; Cummings BJ; Anderson AJ
    Stem Cell Reports; 2017 Jun; 8(6):1534-1548. PubMed ID: 28479305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C; Torres-Espín A; Hernández J; Alvarez-Palomo AB; Requena J; Gasull X; Edel MJ; Navarro X
    Cell Transplant; 2016 Oct; 25(10):1833-1852. PubMed ID: 27075820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the Survival and Growth of Human Glioblastoma Grafted Into the Spinal Cord of Mice by Taking Advantage of Immunorejection.
    Itakura G; Kobayashi Y; Nishimura S; Iwai H; Takano M; Iwanami A; Toyama Y; Okano H; Nakamura M
    Cell Transplant; 2015; 24(7):1299-311. PubMed ID: 24818989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.