BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23981817)

  • 1. Effect of vertebroplasty on the compressive strength of vertebral bodies.
    Pneumaticos SG; Triantafyllopoulos GK; Evangelopoulos DS; Hipp JA; Heggeness MH
    Spine J; 2013 Dec; 13(12):1921-7. PubMed ID: 23981817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty.
    Lim TH; Brebach GT; Renner SM; Kim WJ; Kim JG; Lee RE; Andersson GB; An HS
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1297-302. PubMed ID: 12065977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae.
    Higgins KB; Harten RD; Langrana NA; Reiter MF
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1540-7; discussion 1548. PubMed ID: 12865841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model.
    Turner TM; Urban RM; Singh K; Hall DJ; Renner SM; Lim TH; Tomlinson MJ; An HS
    Spine J; 2008; 8(3):482-7. PubMed ID: 18455113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty.
    Molloy S; Mathis JM; Belkoff SM
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1549-54. PubMed ID: 12865843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies.
    Luo J; Daines L; Charalambous A; Adams MA; Annesley-Williams DJ; Dolan P
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2865-73. PubMed ID: 20010394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model.
    Perry A; Mahar A; Massie J; Arrieta N; Garfin S; Kim C
    Spine J; 2005; 5(5):489-93. PubMed ID: 16153574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension.
    Gaitanis IN; Carandang G; Phillips FM; Magovern B; Ghanayem AJ; Voronov LI; Havey RM; Zindrick MR; Hadjipavlou AG; Patwardhan AG
    Spine J; 2005; 5(1):45-54. PubMed ID: 15653084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical comparison of transpedicular versus extrapedicular vertebroplasty using polymethylmethacrylate.
    Erkan S; Wu C; Mehbod AA; Cho W; Transfeldt EE
    J Spinal Disord Tech; 2010 May; 23(3):180-5. PubMed ID: 20065863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine.
    Kayanja MM; Togawa D; Lieberman IH
    Spine J; 2005; 5(1):55-63. PubMed ID: 15653085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary biomechanical evaluation of prophylactic vertebral reinforcement adjacent to vertebroplasty under cyclic loading.
    Oakland RJ; Furtado NR; Wilcox RK; Timothy J; Hall RM
    Spine J; 2009 Feb; 9(2):174-81. PubMed ID: 18640876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertebroplasty with high-viscosity polymethylmethacrylate cement facilitates vertebral body restoration in vitro.
    RĂ¼ger M; Schmoelz W
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2619-25. PubMed ID: 19881400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomechanical analysis of intravertebral pressures during vertebroplasty of cadaveric spines with and without simulated metastases.
    Reidy D; Ahn H; Mousavi P; Finkelstein J; Whyne CM
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1534-9. PubMed ID: 12865840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prophylactic vertebroplasty may reduce the risk of adjacent intact vertebra from fatigue injury: an ex vivo biomechanical study.
    Chiang CK; Wang YH; Yang CY; Yang BD; Wang JL
    Spine (Phila Pa 1976); 2009 Feb; 34(4):356-64. PubMed ID: 19214094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biomechanical investigation of vertebroplasty in osteoporotic compression fractures and in prophylactic vertebral reinforcement.
    Furtado N; Oakland RJ; Wilcox RK; Hall RM
    Spine (Phila Pa 1976); 2007 Aug; 32(17):E480-7. PubMed ID: 17762281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prophylactic vertebroplasty can decrease the fracture risk of adjacent vertebrae: an in vitro cadaveric study.
    Aquarius R; Homminga J; Hosman AJ; Verdonschot N; Tanck E
    Med Eng Phys; 2014 Jul; 36(7):944-8. PubMed ID: 24736018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine?
    Luo J; Bertram W; Sangar D; Adams MA; Annesley-Williams DJ; Dolan P
    Bone; 2010 Apr; 46(4):1050-7. PubMed ID: 20004264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How are adjacent spinal levels affected by vertebral fracture and by vertebroplasty? A biomechanical study on cadaveric spines.
    Luo J; Annesley-Williams DJ; Adams MA; Dolan P
    Spine J; 2017 Jun; 17(6):863-874. PubMed ID: 28167249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biomechanical evaluation of calcium phosphate cements for use in vertebroplasty.
    Hong SJ; Park YK; Kim JH; Lee SH; Ryu KN; Park CM; Kim YS
    J Neurosurg Spine; 2006 Feb; 4(2):154-9. PubMed ID: 16506483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration.
    Luo J; Skrzypiec DM; Pollintine P; Adams MA; Annesley-Williams DJ; Dolan P
    Bone; 2007 Apr; 40(4):1110-9. PubMed ID: 17229596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.