BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 23981852)

  • 21. Cortical circuit activity underlying sleep slow oscillations and spindles.
    Niethard N; Ngo HV; Ehrlich I; Born J
    Proc Natl Acad Sci U S A; 2018 Sep; 115(39):E9220-E9229. PubMed ID: 30209214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators.
    Crunelli V; Hughes SW
    Nat Neurosci; 2010 Jan; 13(1):9-17. PubMed ID: 19966841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous Origins of Human Sleep Spindles in Different Cortical Layers.
    Hagler DJ; Ulbert I; Wittner L; Erőss L; Madsen JR; Devinsky O; Doyle W; Fabó D; Cash SS; Halgren E
    J Neurosci; 2018 Mar; 38(12):3013-3025. PubMed ID: 29449429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular and neurochemical basis of sleep stages in the thalamocortical network.
    Krishnan GP; Chauvette S; Shamie I; Soltani S; Timofeev I; Cash SS; Halgren E; Bazhenov M
    Elife; 2016 Nov; 5():. PubMed ID: 27849520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triangular relationship between sleep spindle activity, general cognitive ability and the efficiency of declarative learning.
    Lustenberger C; Maric A; Dürr R; Achermann P; Huber R
    PLoS One; 2012; 7(11):e49561. PubMed ID: 23185361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Form and Function of Sleep Spindles across the Lifespan.
    Clawson BC; Durkin J; Aton SJ
    Neural Plast; 2016; 2016():6936381. PubMed ID: 27190654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient synchronization of hippocampo-striato-thalamo-cortical networks during sleep spindle oscillations induces motor memory consolidation.
    Boutin A; Pinsard B; Boré A; Carrier J; Fogel SM; Doyon J
    Neuroimage; 2018 Apr; 169():419-430. PubMed ID: 29277652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corticothalamic feedback controls sleep spindle duration in vivo.
    Bonjean M; Baker T; Lemieux M; Timofeev I; Sejnowski T; Bazhenov M
    J Neurosci; 2011 Jun; 31(25):9124-34. PubMed ID: 21697364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night.
    Muller L; Piantoni G; Koller D; Cash SS; Halgren E; Sejnowski TJ
    Elife; 2016 Nov; 5():. PubMed ID: 27855061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans.
    Niknazar M; Krishnan GP; Bazhenov M; Mednick SC
    PLoS One; 2015; 10(12):e0144720. PubMed ID: 26671283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load.
    Mofrad MH; Gilmore G; Koller D; Mirsattari SM; Burneo JG; Steven DA; Khan AR; Suller Marti A; Muller L
    Elife; 2022 Jun; 11():. PubMed ID: 35766286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic evidence for a role for protein kinase A in the maintenance of sleep and thalamocortical oscillations.
    Hellman K; Hernandez P; Park A; Abel T
    Sleep; 2010 Jan; 33(1):19-28. PubMed ID: 20120617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of generator sources of human sleep spindles by dipole tracing method.
    Ueda K; Nittono H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 2000 Jun; 54(3):270-1. PubMed ID: 11186072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex.
    Bernhard H; Schaper FLWVJ; Janssen MLF; Gommer ED; Jansma BM; Van Kranen-Mastenbroek V; Rouhl RPW; de Weerd P; Reithler J; Roberts MJ;
    Neuroimage; 2022 Nov; 263():119625. PubMed ID: 36103955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slow spindles are associated with cortical high frequency activity.
    Hashemi NS; Dehnavi F; Moghimi S; Ghorbani M
    Neuroimage; 2019 Apr; 189():71-84. PubMed ID: 30639838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleep spindles and human cortical nociception: a surface and intracerebral electrophysiological study.
    Claude L; Chouchou F; Prados G; Castro M; De Blay B; Perchet C; García-Larrea L; Mazza S; Bastuji H
    J Physiol; 2015 Nov; 593(22):4995-5008. PubMed ID: 26377229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordination of cortical and thalamic activity during non-REM sleep in humans.
    Mak-McCully RA; Rolland M; Sargsyan A; Gonzalez C; Magnin M; Chauvel P; Rey M; Bastuji H; Halgren E
    Nat Commun; 2017 May; 8():15499. PubMed ID: 28541306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sleep oscillations and their blockage by activating systems.
    Steriade M
    J Psychiatry Neurosci; 1994 Nov; 19(5):354-8. PubMed ID: 7803369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.