BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23982077)

  • 1. Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW).
    Destgeer G; Lee KH; Jung JH; Alazzam A; Sung HJ
    Lab Chip; 2013 Nov; 13(21):4210-6. PubMed ID: 23982077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Submicron separation of microspheres via travelling surface acoustic waves.
    Destgeer G; Ha BH; Jung JH; Sung HJ
    Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microparticle self-assembly induced by travelling surface acoustic waves.
    Destgeer G; Hashmi A; Park J; Ahmed H; Afzal M; Sung HJ
    RSC Adv; 2019 Mar; 9(14):7916-7921. PubMed ID: 35521193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.
    Ma Z; Collins DJ; Ai Y
    Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves.
    Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ
    Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The size dependant behaviour of particles driven by a travelling surface acoustic wave (TSAW).
    Fakhfouri A; Devendran C; Ahmed A; Soria J; Neild A
    Lab Chip; 2018 Dec; 18(24):3926-3938. PubMed ID: 30474095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-droplet microparticle separation using travelling surface acoustic wave.
    Park K; Park J; Jung JH; Destgeer G; Ahmed H; Sung HJ
    Biomicrofluidics; 2017 Nov; 11(6):064112. PubMed ID: 29308101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves.
    Destgeer G; Ha BH; Park J; Jung JH; Alazzam A; Sung HJ
    Anal Chem; 2015 May; 87(9):4627-32. PubMed ID: 25800052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells.
    Geng W; Liu Y; Yu N; Qiao X; Ji M; Niu Y; Niu L; Fu W; Zhang H; Bi K; Chou X
    Anal Chim Acta; 2023 May; 1255():341138. PubMed ID: 37032055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration.
    Ahmed H; Destgeer G; Park J; Jung JH; Sung HJ
    Adv Sci (Weinh); 2018 Feb; 5(2):1700285. PubMed ID: 29619294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation.
    Ahmad R; Destgeer G; Afzal M; Park J; Ahmed H; Jung JH; Park K; Yoon TS; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13313-13319. PubMed ID: 29148722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidic Separation of Proteins Using Aptamer-Functionalized Microparticles.
    Afzal M; Park J; Jeon JS; Akmal M; Yoon TS; Sung HJ
    Anal Chem; 2021 Jun; 93(23):8309-8317. PubMed ID: 34075739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Perturbed Spiral Sheathless Chip for Particle Separation Based on Traveling Surface Acoustic Waves (TSAW).
    Ji M; Liu Y; Duan J; Zang W; Wang Y; Qu Z; Zhang B
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance.
    Mezzanzanica G; Français O; Mariani S
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.