BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23982344)

  • 41. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.
    Walsh P; Simonetti K; Sharpe S
    Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Copper(II) interaction with unstructured prion domain outside the octarepeat region: speciation, stability, and binding details of copper(II) complexes with PrP106-126 peptides.
    Di Natale G; Grasso G; Impellizzeri G; La Mendola D; Micera G; Mihala N; Nagy Z; Osz K; Pappalardo G; Rigó V; Rizzarelli E; Sanna D; Sóvágó I
    Inorg Chem; 2005 Oct; 44(20):7214-25. PubMed ID: 16180886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spontaneous beta-helical fold in prion protein: the case of PrP(82-146).
    Saracino GA; Villa A; Moro G; Cosentino U; Salmona M
    Proteins; 2009 Jun; 75(4):964-76. PubMed ID: 19089953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PrP106-126 amide causes the semi-penetrated poration in the supported lipid bilayers.
    Zhong J; Zheng W; Huang L; Hong Y; Wang L; Qiu Y; Sha Y
    Biochim Biophys Acta; 2007 Jun; 1768(6):1420-9. PubMed ID: 17451641
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antiprion properties of prion protein-derived cell-penetrating peptides.
    Löfgren K; Wahlström A; Lundberg P; Langel U; Gräslund A; Bedecs K
    FASEB J; 2008 Jul; 22(7):2177-84. PubMed ID: 18296502
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immunomodulation of the human prion peptide 106-126 aggregation.
    Hanan E; Goren O; Eshkenazy M; Solomon B
    Biochem Biophys Res Commun; 2001 Jan; 280(1):115-20. PubMed ID: 11162487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of amyloid peptide fibril formation by gold-sulfur complexes.
    Wang W; Zhao C; Zhu D; Gong G; Du W
    J Inorg Biochem; 2017 Jun; 171():1-9. PubMed ID: 28282581
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A neurotoxic and gliotrophic fragment of the prion protein increases plasma membrane microviscosity.
    Salmona M; Forloni G; Diomede L; Algeri M; De Gioia L; Angeretti N; Giaccone G; Tagliavini F; Bugiani O
    Neurobiol Dis; 1997; 4(1):47-57. PubMed ID: 9258911
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The interaction of humic substances with the human prion protein fragment 90-231 affects its protease K resistance and cell internalization.
    Corsaro A; Anselmi C; Polano M; Aceto A; Florio T; De Nobili M
    J Biol Regul Homeost Agents; 2010; 24(1):27-39. PubMed ID: 20385069
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Peptide NMHRYPNQ of the cellular prion protein (PrP(C)) inhibits aggregation and is a potential key for understanding prion-prion interactions.
    Rehders D; Claasen B; Redecke L; Buschke A; Reibe C; Jehmlich N; von Bergen M; Betzel C; Meyer B
    J Mol Biol; 2009 Sep; 392(1):198-207. PubMed ID: 19607841
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of phosphorus dendrimers on the aggregation of the prion peptide PrP 185-208.
    Klajnert B; Cortijo-Arellano M; Cladera J; Majoral JP; Caminade AM; Bryszewska M
    Biochem Biophys Res Commun; 2007 Dec; 364(1):20-5. PubMed ID: 17927954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Copper binding to the neurotoxic peptide PrP106-126: thermodynamic and structural studies.
    Belosi B; Gaggelli E; Guerrini R; Kozłowski H; Łuczkowski M; Mancini FM; Remelli M; Valensin D; Valensin G
    Chembiochem; 2004 Mar; 5(3):349-59. PubMed ID: 14997527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membrane interactions and conformational preferences of human and avian prion N-terminal tandem repeats: the role of copper(II) ions, pH, and membrane mimicking environments.
    Di Natale G; Pappalardo G; Milardi D; Sciacca MF; Attanasio F; La Mendola D; Rizzarelli E
    J Phys Chem B; 2010 Nov; 114(43):13830-8. PubMed ID: 20936829
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of solution conformations of PrP106-126, a neurotoxic fragment of prion protein, by 1H NMR and restrained molecular dynamics.
    Ragg E; Tagliavini F; Malesani P; Monticelli L; Bugiani O; Forloni G; Salmona M
    Eur J Biochem; 1999 Dec; 266(3):1192-201. PubMed ID: 10583417
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of the N-terminal domain on the aggregation properties of the prion protein.
    Frankenfield KN; Powers ET; Kelly JW
    Protein Sci; 2005 Aug; 14(8):2154-66. PubMed ID: 16046631
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prion protein peptide neurotoxicity can be mediated by astrocytes.
    Brown DR
    J Neurochem; 1999 Sep; 73(3):1105-13. PubMed ID: 10461901
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The roles of the conserved tyrosine in the β2-α2 loop of the prion protein.
    Huang D; Caflisch A
    Prion; 2015; 9(6):412-9. PubMed ID: 26689486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The toxicity of prion protein fragment PrP(106-126) is not mediated by membrane permeabilization as shown by a M112W substitution.
    Henriques ST; Pattenden LK; Aguilar MI; Castanho MA
    Biochemistry; 2009 May; 48(19):4198-208. PubMed ID: 19301918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly accelerated self-assembly and fibrillation of prion peptides on solid surfaces.
    Ku SH; Park CB
    Langmuir; 2008 Dec; 24(24):13822-7. PubMed ID: 19053635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.