BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 23982570)

  • 21. Specific and sensitive detection of nucleic acids and RNases using gold nanoparticle-RNA-fluorescent dye conjugates.
    Kim JH; Estabrook RA; Braun G; Lee BR; Reich NO
    Chem Commun (Camb); 2007 Nov; (42):4342-4. PubMed ID: 17957280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes.
    Huang L; Wang DB; Singh N; Yang F; Gu N; Zhang XE
    Nanoscale; 2018 Nov; 10(43):20289-20295. PubMed ID: 30371719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of gold nanoparticles based on circular DNA strand displacement.
    Zhang C; Ma J; Yang J; Dong Y; Xu J
    J Colloid Interface Sci; 2014 Mar; 418():31-6. PubMed ID: 24461814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective decomposition of nucleic acids by laser irradiation on probe-tethered gold nanoparticles in solution.
    Takeda Y; Kondow T; Mafuné F
    Phys Chem Chem Phys; 2011 Jan; 13(2):586-92. PubMed ID: 21038058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fishnet electrochemical Hg2+ sensing strategy based on gold nanoparticle-bioconjugate and thymine-Hg(2+)-thymine coordination chemistry.
    Tang X; Liu H; Zou B; Tian D; Huang H
    Analyst; 2012 Jan; 137(2):309-11. PubMed ID: 22080163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes.
    Degliangeli F; Kshirsagar P; Brunetti V; Pompa PP; Fiammengo R
    J Am Chem Soc; 2014 Feb; 136(6):2264-7. PubMed ID: 24491135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of double-generation gold nanoparticle chip-based dengue virus detection system combining fluorescence turn-on probes.
    Tung YT; Chang CC; Lin YL; Hsieh SL; Wang GJ
    Biosens Bioelectron; 2016 Mar; 77():90-8. PubMed ID: 26397419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions.
    Yue Y; Liu TY; Li HW; Liu Z; Wu Y
    Nanoscale; 2012 Apr; 4(7):2251-4. PubMed ID: 22382936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programmed colorimetric logic devices based on DNA-gold nanoparticle interactions.
    Jiang Q; Wang ZG; Ding B
    Small; 2013 Apr; 9(7):1016-20. PubMed ID: 23293092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning ratios, densities, and supramolecular spacing in bifunctional DNA-modified gold nanoparticles.
    Díaz JA; Grewer DM; Gibbs-Davis JM
    Small; 2012 Mar; 8(6):873-83. PubMed ID: 22228478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aggregation effects of gold nanoparticles for single-base mismatch detection in influenza A (H1N1) DNA sequences using fluorescence and Raman measurements.
    Ganbold EO; Kang T; Lee K; Lee SY; Joo SW
    Colloids Surf B Biointerfaces; 2012 May; 93():148-53. PubMed ID: 22261178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of low quantum yield fluorophores and improved imaging times using metallic nanoparticles.
    Estrada LC; Roberti MJ; Simoncelli S; Levi V; Aramendía PF; Martínez OE
    J Phys Chem B; 2012 Feb; 116(7):2306-13. PubMed ID: 22235949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of fluorescent silica-Au hybrid nanostructures for targeted imaging of tumor cells.
    Cao F; Deng R; Liu D; Song S; Wang S; Su S; Zhang H
    Dalton Trans; 2011 May; 40(18):4800-2. PubMed ID: 21455503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple and rapid colorimetric detection of cofactors of aptazymes using noncrosslinking gold nanoparticle aggregation.
    Ogawa A; Maeda M
    Bioorg Med Chem Lett; 2008 Dec; 18(24):6517-20. PubMed ID: 18952416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA-gold nanocluster.
    Hosseini M; Ahmadi E; Borghei YS; Reza Ganjali M
    Methods Appl Fluoresc; 2017 Mar; 5(1):015005. PubMed ID: 28276344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles.
    Wu ZS; Jiang JH; Fu L; Shen GL; Yu RQ
    Anal Biochem; 2006 Jun; 353(1):22-9. PubMed ID: 16626619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoluminescence properties of sonochemically synthesized gold nanoparticles for DNA biosensing.
    Anandan S; Oh SD; Yoon M; Ashokkumar M
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):191-6. PubMed ID: 20363665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. dsDNA-specific fluorescent copper nanoparticles as a "green" nano-dye for polymerization-mediated biochemical analysis.
    Qing Z; Qing T; Mao Z; He X; Wang K; Zou Z; Shi H; He D
    Chem Commun (Camb); 2014 Oct; 50(84):12746-8. PubMed ID: 25204899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium carbonate-gold nanocluster hybrid spheres: synthesis and versatile application in immunoassays.
    Peng J; Feng LN; Zhang K; Li XH; Jiang LP; Zhu JJ
    Chemistry; 2012 Apr; 18(17):5261-8. PubMed ID: 22422592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces.
    Suzuki K; Hosokawa K; Maeda M
    J Am Chem Soc; 2009 Jun; 131(22):7518-9. PubMed ID: 19445511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.