These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 23983121)

  • 1. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1.
    Ludwig CF; Ullrich F; Leisle L; Stauber T; Jentsch TJ
    J Biol Chem; 2013 Oct; 288(40):28611-9. PubMed ID: 23983121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity.
    Leisle L; Ludwig CF; Wagner FA; Jentsch TJ; Stauber T
    EMBO J; 2011 Jun; 30(11):2140-52. PubMed ID: 21527911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle.
    Sartelet A; Stauber T; Coppieters W; Ludwig CF; Fasquelle C; Druet T; Zhang Z; Ahariz N; Cambisano N; Jentsch TJ; Charlier C
    Dis Model Mech; 2014 Jan; 7(1):119-28. PubMed ID: 24159188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular insights into the human CLC-7/Ostm1 transporter.
    Zhang S; Liu Y; Zhang B; Zhou J; Li T; Liu Z; Li Y; Yang M
    Sci Adv; 2020 Aug; 6(33):eabb4747. PubMed ID: 32851177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle.
    Feng L; Campbell EB; Hsiung Y; MacKinnon R
    Science; 2010 Oct; 330(6004):635-41. PubMed ID: 20929736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.
    Yusef YR; Zúñiga L; Catalán M; Niemeyer MI; Cid LP; Sepúlveda FV
    J Physiol; 2006 Apr; 572(Pt 1):173-81. PubMed ID: 16469788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique gating properties of C. elegans ClC anion channel splice variants are determined by altered CBS domain conformation and the R-helix linker.
    Dave S; Sheehan JH; Meiler J; Strange K
    Channels (Austin); 2010; 4(4):289-301. PubMed ID: 20581474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions.
    Stölting G; Fischer M; Fahlke C
    Pflugers Arch; 2014 Dec; 466(12):2191-204. PubMed ID: 24638271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function.
    Lange PF; Wartosch L; Jentsch TJ; Fuhrmann JC
    Nature; 2006 Mar; 440(7081):220-3. PubMed ID: 16525474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride dependence of hyperpolarization-activated chloride channel gates.
    Pusch M; Jordt SE; Stein V; Jentsch TJ
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):341-53. PubMed ID: 10050002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1.
    Schrecker M; Korobenko J; Hite RK
    Elife; 2020 Aug; 9():. PubMed ID: 32749217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent charge movement associated with activation of the CLC-5 2Cl-/1H+ exchanger.
    Smith AJ; Lippiat JD
    FASEB J; 2010 Oct; 24(10):3696-705. PubMed ID: 20501796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease.
    Polovitskaya MM; Rana T; Ullrich K; Murko S; Bierhals T; Vogt G; Stauber T; Kubisch C; Santer R; Jentsch TJ
    J Biol Chem; 2024 Jul; 300(7):107437. PubMed ID: 38838776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and structural conservation of CBS domains from CLC chloride channels.
    Estévez R; Pusch M; Ferrer-Costa C; Orozco M; Jentsch TJ
    J Physiol; 2004 Jun; 557(Pt 2):363-78. PubMed ID: 14724190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.
    Yamada T; Krzeminski M; Bozoky Z; Forman-Kay JD; Strange K
    Biophys J; 2016 Nov; 111(9):1876-1886. PubMed ID: 27806269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter.
    Rohrbough J; Nguyen HN; Lamb FS
    J Physiol; 2018 Sep; 596(17):4091-4119. PubMed ID: 29917234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, function and structure of a monomeric ClC transporter.
    Robertson JL; Kolmakova-Partensky L; Miller C
    Nature; 2010 Dec; 468(7325):844-7. PubMed ID: 21048711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons.
    Niemeyer MI; Cid LP; Yusef YR; Briones R; Sepúlveda FV
    J Physiol; 2009 Apr; 587(Pt 7):1387-400. PubMed ID: 19153159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.