BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 23983121)

  • 1. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1.
    Ludwig CF; Ullrich F; Leisle L; Stauber T; Jentsch TJ
    J Biol Chem; 2013 Oct; 288(40):28611-9. PubMed ID: 23983121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity.
    Leisle L; Ludwig CF; Wagner FA; Jentsch TJ; Stauber T
    EMBO J; 2011 Jun; 30(11):2140-52. PubMed ID: 21527911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle.
    Sartelet A; Stauber T; Coppieters W; Ludwig CF; Fasquelle C; Druet T; Zhang Z; Ahariz N; Cambisano N; Jentsch TJ; Charlier C
    Dis Model Mech; 2014 Jan; 7(1):119-28. PubMed ID: 24159188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular insights into the human CLC-7/Ostm1 transporter.
    Zhang S; Liu Y; Zhang B; Zhou J; Li T; Liu Z; Li Y; Yang M
    Sci Adv; 2020 Aug; 6(33):eabb4747. PubMed ID: 32851177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle.
    Feng L; Campbell EB; Hsiung Y; MacKinnon R
    Science; 2010 Oct; 330(6004):635-41. PubMed ID: 20929736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.
    Yusef YR; Zúñiga L; Catalán M; Niemeyer MI; Cid LP; Sepúlveda FV
    J Physiol; 2006 Apr; 572(Pt 1):173-81. PubMed ID: 16469788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique gating properties of C. elegans ClC anion channel splice variants are determined by altered CBS domain conformation and the R-helix linker.
    Dave S; Sheehan JH; Meiler J; Strange K
    Channels (Austin); 2010; 4(4):289-301. PubMed ID: 20581474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions.
    Stölting G; Fischer M; Fahlke C
    Pflugers Arch; 2014 Dec; 466(12):2191-204. PubMed ID: 24638271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function.
    Lange PF; Wartosch L; Jentsch TJ; Fuhrmann JC
    Nature; 2006 Mar; 440(7081):220-3. PubMed ID: 16525474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride dependence of hyperpolarization-activated chloride channel gates.
    Pusch M; Jordt SE; Stein V; Jentsch TJ
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):341-53. PubMed ID: 10050002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1.
    Schrecker M; Korobenko J; Hite RK
    Elife; 2020 Aug; 9():. PubMed ID: 32749217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent charge movement associated with activation of the CLC-5 2Cl-/1H+ exchanger.
    Smith AJ; Lippiat JD
    FASEB J; 2010 Oct; 24(10):3696-705. PubMed ID: 20501796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and structural conservation of CBS domains from CLC chloride channels.
    Estévez R; Pusch M; Ferrer-Costa C; Orozco M; Jentsch TJ
    J Physiol; 2004 Jun; 557(Pt 2):363-78. PubMed ID: 14724190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.
    Yamada T; Krzeminski M; Bozoky Z; Forman-Kay JD; Strange K
    Biophys J; 2016 Nov; 111(9):1876-1886. PubMed ID: 27806269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter.
    Rohrbough J; Nguyen HN; Lamb FS
    J Physiol; 2018 Sep; 596(17):4091-4119. PubMed ID: 29917234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, function and structure of a monomeric ClC transporter.
    Robertson JL; Kolmakova-Partensky L; Miller C
    Nature; 2010 Dec; 468(7325):844-7. PubMed ID: 21048711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons.
    Niemeyer MI; Cid LP; Yusef YR; Briones R; Sepúlveda FV
    J Physiol; 2009 Apr; 587(Pt 7):1387-400. PubMed ID: 19153159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent gating of single pores in CLC-0 chloride channels.
    Ludewig U; Pusch M; Jentsch TJ
    Biophys J; 1997 Aug; 73(2):789-97. PubMed ID: 9251795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.