These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23983140)
1. Rapid prototyping of concave microwells for the formation of 3D multicellular cancer aggregates for drug screening. Tu TY; Wang Z; Bai J; Sun W; Peng WK; Huang RY; Thiery JP; Kamm RD Adv Healthc Mater; 2014 Apr; 3(4):609-16. PubMed ID: 23983140 [TBL] [Abstract][Full Text] [Related]
2. Concave microwell array-mediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles. Kang A; Seo HI; Chung BG; Lee SH Nanomedicine; 2015 Jul; 11(5):1153-61. PubMed ID: 25752856 [TBL] [Abstract][Full Text] [Related]
3. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Kim C; Bang JH; Kim YE; Lee SH; Kang JY Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534 [TBL] [Abstract][Full Text] [Related]
4. Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids. Liu T; Chien CC; Parkinson L; Thierry B ACS Appl Mater Interfaces; 2014 Jun; 6(11):8090-7. PubMed ID: 24773458 [TBL] [Abstract][Full Text] [Related]
5. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Lee JM; Park DY; Yang L; Kim EJ; Ahrberg CD; Lee KB; Chung BG Sci Rep; 2018 Nov; 8(1):17145. PubMed ID: 30464248 [TBL] [Abstract][Full Text] [Related]
6. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102 [TBL] [Abstract][Full Text] [Related]
7. Calcium Peroxide-Containing Polydimethylsiloxane-Based Microwells for Inhibiting Cell Death in Spheroids through Improved Oxygen Supply. Mizukami Y; Takahashi Y; Shimizu K; Konishi S; Takakura Y; Nishikawa M Biol Pharm Bull; 2021; 44(10):1458-1464. PubMed ID: 34602554 [TBL] [Abstract][Full Text] [Related]
8. A cell-loss-free concave microwell array based size-controlled multi-cellular tumoroid generation for anti-cancer drug screening. Lee SW; Jeong SY; Shin TH; Min J; Lee D; Jeong GS PLoS One; 2019; 14(7):e0219834. PubMed ID: 31344058 [TBL] [Abstract][Full Text] [Related]
9. Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model. Yeon SE; No da Y; Lee SH; Nam SW; Oh IH; Lee J; Kuh HJ PLoS One; 2013; 8(9):e73345. PubMed ID: 24039920 [TBL] [Abstract][Full Text] [Related]
10. Large-Scale Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids. Senkowski W; Jarvius M; Rubin J; Lengqvist J; Gustafsson MG; Nygren P; Kultima K; Larsson R; Fryknäs M Cell Chem Biol; 2016 Nov; 23(11):1428-1438. PubMed ID: 27984028 [TBL] [Abstract][Full Text] [Related]
11. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188 [TBL] [Abstract][Full Text] [Related]
12. Networked concave microwell arrays for constructing 3D cell spheroids. Lee GH; Lee JS; Lee GH; Joung WY; Kim SH; Lee SH; Park JY; Kim DH Biofabrication; 2017 Nov; 10(1):015001. PubMed ID: 29190216 [TBL] [Abstract][Full Text] [Related]
13. Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Shin HS; Kook YM; Hong HJ; Kim YM; Koh WG; Lim JY Acta Biomater; 2016 Nov; 45():121-132. PubMed ID: 27592814 [TBL] [Abstract][Full Text] [Related]
14. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems. Howes AL; Richardson RD; Finlay D; Vuori K PLoS One; 2014; 9(9):e108283. PubMed ID: 25247711 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. Sabhachandani P; Sarkar S; Mckenney S; Ravi D; Evens AM; Konry T J Control Release; 2019 Feb; 295():21-30. PubMed ID: 30550941 [TBL] [Abstract][Full Text] [Related]
16. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening. Yang W; Yu H; Li G; Wei F; Wang Y; Liu L Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631 [TBL] [Abstract][Full Text] [Related]
17. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids. Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205 [TBL] [Abstract][Full Text] [Related]
18. Combination of microwell structures and direct oxygenation enables efficient and size-regulated aggregate formation of an insulin-secreting pancreatic β-cell line. Shinohara M; Kimura H; Montagne K; Komori K; Fujii T; Sakai Y Biotechnol Prog; 2014; 30(1):178-87. PubMed ID: 24265060 [TBL] [Abstract][Full Text] [Related]
19. A Novel Multiparametric Drug-Scoring Method for High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer. Cribbes S; Kessel S; McMenemy S; Qiu J; Chan LL SLAS Discov; 2017 Jun; 22(5):547-557. PubMed ID: 28346096 [TBL] [Abstract][Full Text] [Related]
20. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate. Lei KF; Liu TK; Tsang NM Biosens Bioelectron; 2018 Feb; 100():355-360. PubMed ID: 28946107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]