These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 23983208)
1. Electron density deformations provide new insights into the spectral shift of rhodopsins. Hernández-Rodríguez EW; Montero-Alejo AL; López R; Sánchez-García E; Montero-Cabrera LA; de la Vega JM J Comput Chem; 2013 Oct; 34(28):2460-71. PubMed ID: 23983208 [TBL] [Abstract][Full Text] [Related]
2. Understanding rhodopsin mutations linked to the retinitis pigmentosa disease: a QM/MM and DFT/MRCI study. Hernández-Rodríguez EW; Sánchez-García E; Crespo-Otero R; Montero-Alejo AL; Montero LA; Thiel W J Phys Chem B; 2012 Jan; 116(3):1060-76. PubMed ID: 22126625 [TBL] [Abstract][Full Text] [Related]
3. The effect of protein environment on photoexcitation properties of retinal. Kaila VR; Send R; Sundholm D J Phys Chem B; 2012 Feb; 116(7):2249-58. PubMed ID: 22166007 [TBL] [Abstract][Full Text] [Related]
4. Spectral tuning in visual pigments: an ONIOM(QM:MM) study on bovine rhodopsin and its mutants. Altun A; Yokoyama S; Morokuma K J Phys Chem B; 2008 Jun; 112(22):6814-27. PubMed ID: 18473437 [TBL] [Abstract][Full Text] [Related]
5. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra. Kloppmann E; Becker T; Ullmann GM Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786 [TBL] [Abstract][Full Text] [Related]
6. Structural coupling of 11-cis-7-methyl-retinal and amino acids at the ligand binding pocket of rhodopsin. Aguilà M; Toledo D; Morillo M; Dominguez M; Vaz B; Alvarez R; de Lera AR; Garriga P Photochem Photobiol; 2009; 85(2):485-93. PubMed ID: 19267873 [TBL] [Abstract][Full Text] [Related]
7. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. Okada T; Sugihara M; Bondar AN; Elstner M; Entel P; Buss V J Mol Biol; 2004 Sep; 342(2):571-83. PubMed ID: 15327956 [TBL] [Abstract][Full Text] [Related]
8. Calculating absorption shifts for retinal proteins: computational challenges. Wanko M; Hoffmann M; Strodel P; Koslowski A; Thiel W; Neese F; Frauenheim T; Elstner M J Phys Chem B; 2005 Mar; 109(8):3606-15. PubMed ID: 16851399 [TBL] [Abstract][Full Text] [Related]
9. Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods. Frähmcke JS; Wanko M; Elstner M J Phys Chem B; 2012 Mar; 116(10):3313-21. PubMed ID: 22332756 [TBL] [Abstract][Full Text] [Related]
10. Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima. Shtyrov AA; Nikolaev DM; Mironov VN; Vasin AV; Panov MS; Tveryanovich YS; Ryazantsev MN Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809708 [TBL] [Abstract][Full Text] [Related]
11. Absorption of schiff-base retinal chromophores in vacuo. Andersen LH; Nielsen IB; Kristensen MB; El Ghazaly MO; Haacke S; Nielsen MB; Petersen MA J Am Chem Soc; 2005 Sep; 127(35):12347-50. PubMed ID: 16131214 [TBL] [Abstract][Full Text] [Related]
12. Solvent effects on the low-lying excited states of a model of retinal. Muñoz Losa A; Fdez Galván I; Martín ME; Aguilar MA J Phys Chem B; 2006 Sep; 110(36):18064-71. PubMed ID: 16956299 [TBL] [Abstract][Full Text] [Related]
14. [Studies on the conformational state of the chromophore group (11-cis-retinal) in rhodopsin by computer molecular simulation methods]. Fel'dman TB; Kholmurodov KhT; Ostrovskiĭ MA; Khrenova MG; Nemukhin AV Biofizika; 2009; 54(4):660-7. PubMed ID: 19795787 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue. Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029 [TBL] [Abstract][Full Text] [Related]
16. Toward an understanding of the retinal chromophore in rhodopsin mimics. Huntress MM; Gozem S; Malley KR; Jailaubekov AE; Vasileiou C; Vengris M; Geiger JH; Borhan B; Schapiro I; Larsen DS; Olivucci M J Phys Chem B; 2013 Sep; 117(35):10053-70. PubMed ID: 23971945 [TBL] [Abstract][Full Text] [Related]
17. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin. Furutani Y; Shichida Y; Kandori H Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303 [TBL] [Abstract][Full Text] [Related]
18. Insight into the chromophore of rhodopsin and its Meta-II photointermediate by Brinkmann A; Sternberg U; Bovee-Geurts PHM; Fernández Fernández I; Lugtenburg J; Kentgens APM; DeGrip WJ Phys Chem Chem Phys; 2018 Dec; 20(48):30174-30188. PubMed ID: 30484791 [TBL] [Abstract][Full Text] [Related]
19. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base. Tsutsui K; Imai H; Shichida Y Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760 [TBL] [Abstract][Full Text] [Related]
20. The role of the beta-ionone ring in the photochemical reaction of rhodopsin. Send R; Sundholm D J Phys Chem A; 2007 Jan; 111(1):27-33. PubMed ID: 17201384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]