These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23983619)

  • 41. Offshore Wind Energy Climate Projection Using UPSCALE Climate Data under the RCP8.5 Emission Scenario.
    Gross M; Magar V
    PLoS One; 2016; 11(10):e0165423. PubMed ID: 27788208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sea wave propagation from offshore to Maputo's coast. Application to longshore sediment transport assessment.
    Viola CN; Grifoll M; Palalane J; Oliveira TC
    Water Sci Technol; 2014; 69(12):2438-45. PubMed ID: 24960005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Offshore substation workers' exposure to harmful factors - Actions minimizing risk of hazards].
    Piotrowski PJ; Robak S; Polewaczyk MM; Raczkowski R
    Med Pr; 2016; 67(1):51-72. PubMed ID: 27044719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How could operational underwater sound from future offshore wind turbines impact marine life?
    Stöber U; Thomsen F
    J Acoust Soc Am; 2021 Mar; 149(3):1791. PubMed ID: 33765823
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mapping seabird sensitivity to offshore wind farms.
    Bradbury G; Trinder M; Furness B; Banks AN; Caldow RW; Hume D
    PLoS One; 2014; 9(9):e106366. PubMed ID: 25210739
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Offshore wind power station (OWPS) site selection using a two-stage MCDM-based spherical fuzzy set approach.
    Wang CN; Nguyen NA; Dang TT
    Sci Rep; 2022 Mar; 12(1):4260. PubMed ID: 35277582
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An integrated assessment for wind energy in Lake Michigan coastal counties.
    Nordman E; VanderMolen J; Gajewski B; Isely P; Fan Y; Koches J; Damm S; Ferguson A; Schoolmaster C
    Integr Environ Assess Manag; 2015 Apr; 11(2):287-97. PubMed ID: 25377179
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microplastics in a wind farm area: A case study at the Rudong Offshore Wind Farm, Yellow Sea, China.
    Wang T; Zou X; Li B; Yao Y; Li J; Hui H; Yu W; Wang C
    Mar Pollut Bull; 2018 Mar; 128():466-474. PubMed ID: 29571398
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How offshore wind could become economically attractive in low-resource regions like Indonesia.
    Langer J; Simanjuntak S; Pfenninger S; Laguna AJ; Lavidas G; Polinder H; Quist J; Rahayu HP; Blok K
    iScience; 2022 Sep; 25(9):104945. PubMed ID: 36072547
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solar and wind power data from the Chinese State Grid Renewable Energy Generation Forecasting Competition.
    Chen Y; Xu J
    Sci Data; 2022 Sep; 9(1):577. PubMed ID: 36130945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Relation between Migratory Activity of
    Brabant R; Laurent Y; Jonge Poerink B; Degraer S
    Animals (Basel); 2021 Dec; 11(12):. PubMed ID: 34944234
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Endangered Atlantic Sturgeon in the New York Wind Energy Area: implications of future development in an offshore wind energy site.
    Ingram EC; Cerrato RM; Dunton KJ; Frisk MG
    Sci Rep; 2019 Aug; 9(1):12432. PubMed ID: 31455878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Active power control strategy for wind farms based on power prediction errors distribution considering regional data.
    Kader MS; Mahmudh R; Xiaoqing H; Niaz A; Shoukat MU
    PLoS One; 2022; 17(8):e0273257. PubMed ID: 36001548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of the global electric power system on terrestrial biodiversity.
    Holland RA; Scott K; Agnolucci P; Rapti C; Eigenbrod F; Taylor G
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):26078-26084. PubMed ID: 31792168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Geophysical potential for wind energy over the open oceans.
    Possner A; Caldeira K
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11338-11343. PubMed ID: 29073053
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Opportunity for offshore wind to reduce future demand for coal-fired power plants in China with consequent savings in emissions of CO2.
    Lu X; McElroy MB; Chen X; Kang C
    Environ Sci Technol; 2014 Dec; 48(24):14764-71. PubMed ID: 25409413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wind and power density data of strategic offshore locations in the Colombian Caribbean coast.
    Rueda-Bayona JG; Guzmán A; Eras JJC
    Data Brief; 2019 Dec; 27():104720. PubMed ID: 31737761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The potential of current- and wind-driven transport for environmental management of the Baltic Sea.
    Soomere T; Döös K; Lehmann A; Meier HE; Murawski J; Myrberg K; Stanev E
    Ambio; 2014 Feb; 43(1):94-104. PubMed ID: 24414808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using green finance to counteract the adverse effects of COVID-19 pandemic on renewable energy investment-The case of offshore wind power in China.
    Tu Q; Mo J; Liu Z; Gong C; Fan Y
    Energy Policy; 2021 Nov; 158():112542. PubMed ID: 34539036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future.
    Bailey H; Brookes KL; Thompson PM
    Aquat Biosyst; 2014; 10():8. PubMed ID: 25250175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.