These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23984683)

  • 1. Ferrocenoyl phenylalanine: a new strategy toward supramolecular hydrogels with multistimuli responsive properties.
    Sun Z; Li Z; He Y; Shen R; Deng L; Yang M; Liang Y; Zhang Y
    J Am Chem Soc; 2013 Sep; 135(36):13379-86. PubMed ID: 23984683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistimuli-Responsive, Moldable Supramolecular Hydrogels Cross-Linked by Ultrafast Complexation of Metal Ions and Biopolymers.
    Sun Z; Lv F; Cao L; Liu L; Zhang Y; Lu Z
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7944-8. PubMed ID: 26012538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular interactions of a phenyl/perfluorophenyl pair in the formation of supramolecular nanofibers and hydrogels.
    Hsu SM; Lin YC; Chang JW; Liu YH; Lin HC
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1921-7. PubMed ID: 24420005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives.
    Liyanage W; Nilsson BL
    Langmuir; 2016 Jan; 32(3):787-99. PubMed ID: 26717444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembly of Ferrocene-Phenylalanine@Graphene Oxide Hybrid Hydrogels for Dopamine Detection.
    Zhang G; Wang J; Wang Y; Qi W; Su R; He Z
    Chempluschem; 2020 Oct; 85(10):2341-2348. PubMed ID: 33094928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells.
    Komatsu H; Tsukiji S; Ikeda M; Hamachi I
    Chem Asian J; 2011 Sep; 6(9):2368-75. PubMed ID: 21721133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels.
    Zhang Y; Kuang Y; Gao Y; Xu B
    Langmuir; 2011 Jan; 27(2):529-37. PubMed ID: 20608718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators.
    Abraham BL; Liyanage W; Nilsson BL
    Langmuir; 2019 Nov; 35(46):14939-14948. PubMed ID: 31664849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels.
    Boztas AO; Guiseppi-Elie A
    Biomacromolecules; 2009 Aug; 10(8):2135-43. PubMed ID: 19601642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal ion, light, and redox responsive interaction of vesicles by a supramolecular switch.
    Samanta A; Ravoo BJ
    Chemistry; 2014 Apr; 20(17):4966-73. PubMed ID: 24643990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dramatic specific-ion effect in supramolecular hydrogels.
    Roy S; Javid N; Frederix PW; Lamprou DA; Urquhart AJ; Hunt NT; Halling PJ; Ulijn RV
    Chemistry; 2012 Sep; 18(37):11723-31. PubMed ID: 22888053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-responsive macroscopic gel assembly based on discrete dual interactions.
    Nakahata M; Takashima Y; Harada A
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3617-21. PubMed ID: 24596338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Healing, Expansion-Contraction, and Shape-Memory Properties of a Preorganized Supramolecular Hydrogel through Host-Guest Interactions.
    Miyamae K; Nakahata M; Takashima Y; Harada A
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8984-7. PubMed ID: 26080301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A ligand-chirality controlled supramolecular hydrogel.
    Shen JS; Mao GJ; Zhou YH; Jiang YB; Zhang HW
    Dalton Trans; 2010 Aug; 39(30):7054-8. PubMed ID: 20571710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular self-assembly of π-conjugated hydrocarbons via 2D cooperative CH/π interaction.
    Li Q; Han C; Horton SR; Fuentes-Cabrera M; Sumpter BG; Lu W; Bernholc J; Maksymovych P; Pan M
    ACS Nano; 2012 Jan; 6(1):566-72. PubMed ID: 22168531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and DFT calculation of Fe(cp)(2) redox potential in molecular monolayers covalently bound to H-Si(100).
    Cossi M; Iozzi MF; Marrani AG; Lavecchia T; Galloni P; Zanoni R; Decker F
    J Phys Chem B; 2006 Nov; 110(46):22961-5. PubMed ID: 17107126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.