These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23985064)
1. Combustion of 1,5-dinitrobiuret (DNB) in the presence of nitric acid using ReaxFF molecular dynamics simulations. Russo MF; Bedrov D; Singhai S; van Duin AC J Phys Chem A; 2013 Sep; 117(38):9216-23. PubMed ID: 23985064 [TBL] [Abstract][Full Text] [Related]
2. Development and application of a ReaxFF reactive force field for hydrogen combustion. Agrawalla S; van Duin AC J Phys Chem A; 2011 Feb; 115(6):960-72. PubMed ID: 21261320 [TBL] [Abstract][Full Text] [Related]
3. Direct dynamics simulation of the activation and dissociation of 1,5-dinitrobiuret (HDNB). Sun R; Siebert MR; Xu L; Chambreau SD; Vaghjiani GL; Lischka H; Liu J; Hase WL J Phys Chem A; 2014 Mar; 118(12):2228-36. PubMed ID: 24571276 [TBL] [Abstract][Full Text] [Related]
4. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. Weismiller MR; van Duin AC; Lee J; Yetter RA J Phys Chem A; 2010 May; 114(17):5485-92. PubMed ID: 20384351 [TBL] [Abstract][Full Text] [Related]
5. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion. Cheng T; Jaramillo-Botero A; Goddard WA; Sun H J Am Chem Soc; 2014 Jul; 136(26):9434-42. PubMed ID: 24885152 [TBL] [Abstract][Full Text] [Related]
6. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Chenoweth K; van Duin AC; Goddard WA J Phys Chem A; 2008 Feb; 112(5):1040-53. PubMed ID: 18197648 [TBL] [Abstract][Full Text] [Related]
7. Thermal decomposition of 1,5-dinitrobiuret (DNB): direct dynamics trajectory simulations and statistical modeling. Liu J; Chambreau SD; Vaghjiani GL J Phys Chem A; 2011 Jul; 115(28):8064-72. PubMed ID: 21648953 [TBL] [Abstract][Full Text] [Related]
8. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. Chenoweth K; van Duin AC; Dasgupta S; Goddard WA J Phys Chem A; 2009 Mar; 113(9):1740-6. PubMed ID: 19209880 [TBL] [Abstract][Full Text] [Related]
9. Development of a ReaxFF reactive force field for titanium dioxide/water systems. Kim SY; Kumar N; Persson P; Sofo J; van Duin AC; Kubicki JD Langmuir; 2013 Jun; 29(25):7838-46. PubMed ID: 23687907 [TBL] [Abstract][Full Text] [Related]
10. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures. Cheng XM; Wang QD; Li JQ; Wang JB; Li XY J Phys Chem A; 2012 Oct; 116(40):9811-8. PubMed ID: 22998396 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field. Kamat AM; van Duin AC; Yakovlev A J Phys Chem A; 2010 Dec; 114(48):12561-72. PubMed ID: 21067165 [TBL] [Abstract][Full Text] [Related]
12. Simulation of titanium metal/titanium dioxide etching with chlorine and hydrogen chloride gases using the ReaxFF reactive force field. Kim SY; van Duin AC J Phys Chem A; 2013 Jul; 117(27):5655-63. PubMed ID: 23750609 [TBL] [Abstract][Full Text] [Related]
13. First-principles-based reaction kinetics from reactive molecular dynamics simulations: Application to hydrogen peroxide decomposition. Ilyin DV; Goddard WA; Oppenheim JJ; Cheng T Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18202-18208. PubMed ID: 30242137 [TBL] [Abstract][Full Text] [Related]
14. Mechanism and kinetics for the initial steps of pyrolysis and combustion of 1,6-dicyclopropane-2,4-hexyne from ReaxFF reactive dynamics. Liu L; Bai C; Sun H; Goddard WA J Phys Chem A; 2011 May; 115(19):4941-50. PubMed ID: 21510658 [TBL] [Abstract][Full Text] [Related]
15. ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions. Ashraf C; Jain A; Xuan Y; van Duin AC Phys Chem Chem Phys; 2017 Feb; 19(7):5004-5017. PubMed ID: 28140413 [TBL] [Abstract][Full Text] [Related]
16. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride. Rahaman O; van Duin AC; Bryantsev VS; Mueller JE; Solares SD; Goddard WA; Doren DJ J Phys Chem A; 2010 Mar; 114(10):3556-68. PubMed ID: 20180586 [TBL] [Abstract][Full Text] [Related]
17. Reactive Molecular Dynamics Simulations and Quantum Chemistry Calculations To Investigate Soot-Relevant Reaction Pathways for Hexylamine Isomers. Kwon H; Etz BD; Montgomery MJ; Messerly R; Shabnam S; Vyas S; van Duin ACT; McEnally CS; Pfefferle LD; Kim S; Xuan Y J Phys Chem A; 2020 May; 124(21):4290-4304. PubMed ID: 32364731 [TBL] [Abstract][Full Text] [Related]
18. Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures. Zhang B; van Duin AC; Johnson JK J Phys Chem B; 2014 Oct; 118(41):12008-16. PubMed ID: 25285669 [TBL] [Abstract][Full Text] [Related]
19. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field. Monti S; Corozzi A; Fristrup P; Joshi KL; Shin YK; Oelschlaeger P; van Duin AC; Barone V Phys Chem Chem Phys; 2013 Sep; 15(36):15062-77. PubMed ID: 23925839 [TBL] [Abstract][Full Text] [Related]
20. Effects of fuel additives on the thermal cracking of n-decane from reactive molecular dynamics. Wang QD; Hua XX; Cheng XM; Li JQ; Li XY J Phys Chem A; 2012 Apr; 116(15):3794-801. PubMed ID: 22435791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]