BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23985133)

  • 1. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity.
    Yang X; Lai Z; Lai C; Zhu M; Li S; Wang J; Wang X
    Biotechnol Biofuels; 2013 Aug; 6(1):124. PubMed ID: 23985133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered
    Li Y; Hu J; Qu C; Chen L; Guo X; Fu H; Wang J
    Biotechnol Biofuels; 2019; 12():214. PubMed ID: 31528202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting the Type I-B CRISPR Genome Editing System in Thermoanaerobacterium aotearoense SCUT27 and Engineering the Strain for Enhanced Ethanol Production.
    Dai K; Fu H; Guo X; Qu C; Lan Y; Wang J
    Appl Environ Microbiol; 2022 Aug; 88(15):e0075122. PubMed ID: 35862665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Thermoanaerobacterium aotearoense SCUT27 with argR knockout for enhanced ethanol production from lignocellulosic hydrolysates.
    Qu C; Chen L; Fu H; Wang J
    Bioresour Technol; 2020 Aug; 310():123435. PubMed ID: 32361198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The redox-sensing transcriptional repressor Rex is important for regulating the products distribution in Thermoanaerobacterium aotearoense SCUT27.
    Qu C; Chen L; Li Y; Fu H; Wang J
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5605-5617. PubMed ID: 32248440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorisation of mixed bakery waste in non-sterilized fermentation for L-lactic acid production by an evolved Thermoanaerobacterium sp. strain.
    Yang X; Zhu M; Huang X; Lin CS; Wang J; Li S
    Bioresour Technol; 2015 Dec; 198():47-54. PubMed ID: 26363501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Thermoanaerobacterium aotearoense strain SCUT27 for biofuels production from sucrose and molasses.
    Dai K; Qu C; Feng J; Lan Y; Fu H; Wang J
    Biotechnol Biofuels Bioprod; 2023 Oct; 16(1):155. PubMed ID: 37865803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture.
    Lai Z; Zhu M; Yang X; Wang J; Li S
    Biotechnol Biofuels; 2014; 7(1):119. PubMed ID: 25184001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B.
    Zhao J; Xu L; Wang Y; Zhao X; Wang J; Garza E; Manow R; Zhou S
    Microb Cell Fact; 2013 Jun; 12():57. PubMed ID: 23758664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering
    Li C; Gai Z; Wang K; Jin L
    Biotechnol Biofuels; 2017; 10():235. PubMed ID: 29046721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense.
    Cai Y; Lai C; Li S; Liang Z; Zhu M; Liang S; Wang J
    Enzyme Microb Technol; 2011 Feb; 48(2):155-61. PubMed ID: 22112825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient open fermentative production of polymer-grade L-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. strain P38.
    Peng L; Xie N; Guo L; Wang L; Yu B; Ma Y
    PLoS One; 2014; 9(9):e107143. PubMed ID: 25192451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Catabolite Repression and the Related Genes of ccpA, ptsH and hprK in Thermoanaerobacterium aotearoense.
    Zhu M; Lu Y; Wang J; Li S; Wang X
    PLoS One; 2015; 10(11):e0142121. PubMed ID: 26540271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria.
    Taniguchi M; Tokunaga T; Horiuchi K; Hoshino K; Sakai K; Tanaka T
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):160-5. PubMed ID: 15558273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.
    Ouyang J; Cai C; Chen H; Jiang T; Zheng Z
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2387-97. PubMed ID: 23076574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Draft Genome Sequence of an Anaerobic, Thermophilic Bacterium, Thermoanaerobacterium aotearoense SCUT27, Isolated from a Hot Spring in China.
    Ai H; Zhang J; Yang M; Yu P; Li S; Zhu M; Dong H; Wang S; Wang J
    Genome Announc; 2014 Feb; 2(1):. PubMed ID: 24526632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.
    Ma K; Hu G; Pan L; Wang Z; Zhou Y; Wang Y; Ruan Z; He M
    Bioresour Technol; 2016 Nov; 219():114-122. PubMed ID: 27479802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor engineering in Thermoanaerobacterium aotearoense SCUT27 for maximizing ethanol yield and revealing an enzyme complex with high ferredoxin-NAD
    Dai K; Qu C; Li X; Lan Y; Fu H; Wang J
    Bioresour Technol; 2024 Jun; 402():130784. PubMed ID: 38701976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.