These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23985145)

  • 1. Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system.
    Aboulwafa M; Saier MH
    Microbiology (Reading); 2013 Nov; 159(Pt 11):2213-2224. PubMed ID: 23985145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.
    Bogdanov M; Aboulwafa M; Saier MH
    J Mol Microbiol Biotechnol; 2013; 23(1-2):24-34. PubMed ID: 23615193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soluble sugar permeases of the phosphotransferase system in Escherichia coli: evidence for two physically distinct forms of the proteins in vivo.
    Aboulwafa M; Saier M
    Mol Microbiol; 2003 Apr; 48(1):131-41. PubMed ID: 12657050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system.
    Aboulwafa M; Zhang Z; Saier MH
    PLoS One; 2019; 14(11):e0219332. PubMed ID: 31751341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase.
    Aboulwafa M; Hvorup R; Saier MH
    Arch Microbiol; 2004 Jan; 181(1):26-34. PubMed ID: 14634719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro interconversion of the soluble and membrane- integrated forms of the Escherichia coli glucose enzyme II of the phosphoenolpyruvate-dependent sugar-transporting phosphotransferase system.
    Aboulwafa M; Saier MH
    J Mol Microbiol Biotechnol; 2007; 12(3-4):263-8. PubMed ID: 17587874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium.
    Saier MH; Novotny MJ; Comeau-Fuhrman D; Osumi T; Desai JD
    J Bacteriol; 1983 Sep; 155(3):1351-7. PubMed ID: 6350268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.
    Jeckelmann JM; Erni B
    Subcell Biochem; 2019; 92():223-274. PubMed ID: 31214989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria.
    Reizer A; Pao GM; Saier MH
    J Mol Evol; 1991 Aug; 33(2):179-93. PubMed ID: 1920454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis.
    Morabbi Heravi K; Altenbuchner J
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of sugar transport and phosphorylation via permeases of the bacterial phosphotransferase system: catalytic residues in the beta-glucoside-specific permease as defined by site-specific mutagenesis.
    Sutrina SL; Schnetz K; Rak B; Saier MH
    Res Microbiol; 1990; 141(3):368-74. PubMed ID: 2281195
    [No Abstract]   [Full Text] [Related]  

  • 12. Catalytic activities associated with the enzymes II of the bacterial phosphotransferase system.
    Saier MH
    J Supramol Struct; 1980; 14(3):281-94. PubMed ID: 7012451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis.
    Reizer J; Bachem S; Reizer A; Arnaud M; Saier MH; Stülke J
    Microbiology (Reading); 1999 Dec; 145 ( Pt 12)():3419-3429. PubMed ID: 10627040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-Protein Interactions in the Cytoplasmic Membrane of Escherichia coli: Influence of the Overexpression of Diverse Transporter-Encoding Genes on the Activities of PTS Sugar Uptake Systems.
    Aboulwafa M; Zhang Z; Saier MH
    Microb Physiol; 2020; 30(1-6):36-49. PubMed ID: 32998150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Escherichia coli mannitol permease as a model for transport via the bacterial phosphotransferase system.
    Jacobson GR; Saraceni-Richards C
    J Bioenerg Biomembr; 1993 Dec; 25(6):621-6. PubMed ID: 8144490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants.
    Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH
    J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles.
    Misko TP; Mitchell WJ; Meadow ND; Roseman S
    J Biol Chem; 1987 Nov; 262(33):16261-6. PubMed ID: 3316216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-dependent cluster density dynamics of Corynebacterium glutamicum phosphotransferase system permeases.
    Martins GB; Giacomelli G; Goldbeck O; Seibold GM; Bramkamp M
    Mol Microbiol; 2019 May; 111(5):1335-1354. PubMed ID: 30748039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose and trehalose PTS permeases of Spiroplasma citri probably share a single IIA domain, enabling the spiroplasma to adapt quickly to carbohydrate changes in its environment.
    André A; Maccheroni W; Doignon F; Garnier M; Renaudin J
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2687-2696. PubMed ID: 12949193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.