These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23985937)

  • 1. In situ synthesis of LiV3O8 nanorods on graphene as high rate-performance cathode materials for rechargeable lithium batteries.
    Mo R; Du Y; Zhang N; Rooney D; Sun K
    Chem Commun (Camb); 2013 Oct; 49(80):9143-5. PubMed ID: 23985937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LiV
    Zhu L; Xie L; Cao X
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10909-10917. PubMed ID: 29516728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-Density Improvement in Li-Ion Rechargeable Batteries Based on LiCoO
    Bae KY; Cho SH; Kim BH; Son BD; Yoon WY
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31238544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrinkled-graphene enriched MoO3 nanobelts with increased conductivity and reduced stress for enhanced electrochemical performance.
    Dong Y; Li S; Xu H; Yan M; Xu X; Tian X; Liu Q; Mai L
    Phys Chem Chem Phys; 2013 Oct; 15(40):17165-70. PubMed ID: 24013817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in situ ionic-liquid-assisted synthetic approach to iron fluoride/graphene hybrid nanostructures as superior cathode materials for lithium ion batteries.
    Li B; Rooney DW; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5057-63. PubMed ID: 23688074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of LiV3O8/Polypyrrole and Their Derived LiV3O8/Carbon Composites as Cathode Materials for Lithium Rechargeable Batteries.
    Cao X; Zhang J; Zhu L
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7081-6. PubMed ID: 26716287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries.
    Song Z; Xu T; Gordin ML; Jiang YB; Bae IT; Xiao Q; Zhan H; Liu J; Wang D
    Nano Lett; 2012 May; 12(5):2205-11. PubMed ID: 22449138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries.
    Lu Y; Wen Z; Jin J; Rui K; Wu X
    Phys Chem Chem Phys; 2014 May; 16(18):8556-62. PubMed ID: 24671146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries.
    Jiang KC; Wu XL; Yin YX; Lee JS; Kim J; Guo YG
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4858-63. PubMed ID: 22931115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-precipitation synthesis and electrochemical properties of graphene supported LiMn1/3Ni1/3Co1/3O2 cathode materials for lithium-ion batteries.
    Ding YH; Ren HM; Huang YY; Chang FH; He X; Fen JQ; Zhang P
    Nanotechnology; 2013 Sep; 24(37):375401. PubMed ID: 23974082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of ammonium vanadium oxide nanorods for Na-ion battery cathodes.
    Fei H; Liu X; Lin Y; Wei M
    J Colloid Interface Sci; 2014 Aug; 428():73-7. PubMed ID: 24910037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of LiF/Fe/Graphene nanocomposites as cathode material for lithium-ion batteries.
    Ma R; Dong Y; Xi L; Yang S; Lu Z; Chung C
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):892-7. PubMed ID: 23298407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile and rapid synthesis of RGO-In2S3 composites with enhanced cyclability and high capacity for lithium storage.
    Ye F; Du G; Jiang Z; Zhong Y; Wang X; Cao Q; Jiang JZ
    Nanoscale; 2012 Dec; 4(23):7354-7. PubMed ID: 23093135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries.
    Zhao C; Chen Z; Wang W; Xiong P; Li B; Li M; Yang J; Xu Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11992-11998. PubMed ID: 32266770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries.
    Li X; Wolden CA; Ban C; Yang Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28444-51. PubMed ID: 26633238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries.
    Lee J; Urban A; Li X; Su D; Hautier G; Ceder G
    Science; 2014 Jan; 343(6170):519-22. PubMed ID: 24407480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.